File size: 3,208 Bytes
60af537
57419d8
9b2c5e1
57419d8
 
 
 
d4cb7c6
57419d8
24f4b49
f7b8e0e
 
c3d8605
aca98af
90ff42e
 
 
aca98af
 
90ff42e
aca98af
d3127bb
 
 
20ca536
d3127bb
 
 
9e7c847
fa09b4a
8134c9f
fa09b4a
 
 
 
 
d3127bb
 
 
 
 
 
 
 
 
 
 
f504910
b16b91f
9e7c847
 
7838123
408a665
 
 
 
 
 
 
 
b30ea65
408a665
9e7c847
408a665
 
 
 
 
 
 
 
20ca536
408a665
 
 
 
 
 
7991981
408a665
 
 
 
 
 
70f0887
408a665
 
 
 
 
1a11002
9e7c847
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import cv2
import os
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s

sample_images = {
    "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
    "Sample 2":  os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
    image_path = sample_images.get(sample_name)
    if image_path and os.path.exists(image_path):
        return Image.open(image_path)
    return None

default_sample_image = load_sample_image("Sample 1")

def load_sample_image(choice):
    if choice in sample_images:
        image_path = sample_images[choice]
        return cv2.imread(image_path)[:, :, ::-1]  
    else:
        raise ValueError("Invalid sample selection.")


def process_image(sample_choice, uploaded_image, yolo_versions=["yolov5"]):
    print(sample_choice, upload_image)
    if uploaded_image is not None:
        image = uploaded_image  # Use the uploaded image
    else:
        # Otherwise, use the selected sample image
        image = load_sample_image(sample_choice)
    image = np.array(image)
    image = cv2.resize(image, (640, 640))
    result_images = []
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
    return result_images

with gr.Blocks() as interface:
    gr.Markdown("# XAI: Visualize Object Detection of Your Models")
    gr.Markdown("Select a sample image to visualize object detection.")
    default_sample = "Sample 1"
    with gr.Row(elem_classes="orchid-green-bg"):
        # Left side: Sample selection and upload image
        with gr.Column():
            sample_selection = gr.Radio(
                choices=list(sample_images.keys()),
                label="Select a Sample Image",
                type="value",
                value=default_sample,  # Set default selection
            )
            # Upload image below sample selection
            gr.Markdown("**Or upload your own image:**")
            upload_image = gr.Image(
                label="Upload an Image",
                type="pil",  # Correct type for file path compatibility
            )
        # Right side: Selected sample image display
        sample_display = gr.Image(
            value=load_sample_image(default_sample),  
            label="Selected Sample Image",
        )
    
    sample_selection.change(
        fn=load_sample_image,
        inputs=sample_selection,
        outputs=sample_display,
    )

    selected_models = gr.CheckboxGroup(
        choices=["yolov5", "yolov8s"],
        value=["yolov5"],
        label="Select Model(s)",
    )
    result_gallery = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500)

    gr.Button("Run").click(
        fn=process_image,
        inputs=[sample_selection, upload_image, selected_models],  # Include both options
        outputs=result_gallery,
    )

interface.launch(share=True)