Spaces:
Sleeping
Sleeping
File size: 4,090 Bytes
60af537 57419d8 9b2c5e1 57419d8 d4cb7c6 57419d8 24f4b49 f7b8e0e c3d8605 6eea241 aca98af 90ff42e aca98af 90ff42e aca98af d3127bb 20ca536 d3127bb fa09b4a 8134c9f fa09b4a d3127bb f504910 f6896cf 6eea241 b5b56dc b0d2191 6a55d2e 5325ebe b0d2191 5325ebe b0d2191 5ce8a01 762717a 6eea241 51daec3 b5b56dc 762717a 6eea241 7838123 408a665 b30ea65 408a665 5325ebe 408a665 6eea241 408a665 20ca536 408a665 7991981 408a665 6eea241 408a665 70f0887 408a665 1a11002 5325ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import numpy as np
import cv2
import os
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
default_sample_image = load_sample_image("Sample 1")
def load_sample_image(choice):
if choice in sample_images:
image_path = sample_images[choice]
return cv2.imread(image_path)[:, :, ::-1]
else:
raise ValueError("Invalid sample selection.")
def process_image(sample_choice, uploaded_image, yolo_versions=["yolov5"]):
print(sample_choice, upload_image)
if uploaded_image is not None:
image = uploaded_image # Use the uploaded image
else:
# Otherwise, use the selected sample image
image = load_sample_image(sample_choice)
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
return result_images
with gr.Blocks() as interface:
# Update CSS to make text white
gr.HTML("""
<style>
body {
background-color: black;
color: white; /* Set the default text color */
}
.gradio-container {
color: white; /* Ensure Gradio components also have white text */
}
h1, h2, h3, h4, h5, h6, p, label {
color: white; /* Make all headings and labels white */
}
.gr-markdown {
color: white; /* Ensure Markdown text is white */
}
.gr-button {
background-color: #007bff; /* Optional: Change button background color */
color: white; /* Ensure button text is white */
}
.gr-button:hover {
background-color: #0056b3; /* Optional: Change button hover color */
}
</style>
""")
gr.Markdown("<h1>XAI: Visualize Object Detection of Your Models</h1>")
gr.Markdown("<p>Select a sample image to visualize object detection.</p>")
default_sample = "Sample 1"
with gr.Row(elem_classes="orchid-green-bg"):
# Left side: Sample selection and upload image
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
type="value",
value=default_sample, # Set default selection
)
# Upload image below sample selection
gr.Markdown("**Or upload your own image:**")
upload_image = gr.Image(
label="Upload an Image",
type="pil", # Correct type for file path compatibility
)
# Right side: Selected sample image display
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
result_gallery = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500)
gr.Button("Run").click(
fn=process_image,
inputs=[sample_selection, upload_image, selected_models], # Include both options
outputs=result_gallery,
)
interface.launch(share=True)
|