File size: 3,713 Bytes
60af537
57419d8
9b2c5e1
57419d8
 
 
 
d4cb7c6
57419d8
24f4b49
f7b8e0e
 
c3d8605
aca98af
90ff42e
 
 
aca98af
 
90ff42e
aca98af
d3127bb
 
 
20ca536
d3127bb
 
 
 
fa09b4a
24f4b49
fa09b4a
 
 
 
 
d3127bb
 
 
 
 
 
 
 
 
 
 
f504910
f6896cf
b5afdc4
 
408a665
b5b56dc
bd99284
b5b56dc
 
 
 
bd99284
6a55d2e
24f4b49
 
5ce8a01
b5b56dc
 
 
408a665
 
 
 
 
 
 
 
b30ea65
408a665
b5afdc4
408a665
 
 
 
 
 
 
 
20ca536
408a665
 
 
 
 
 
7991981
408a665
 
 
 
 
 
70f0887
408a665
 
 
 
 
1a11002
b5b56dc
d477b94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
import cv2
import os
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s

sample_images = {
    "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
    "Sample 2":  os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
    image_path = sample_images.get(sample_name)
    if image_path and os.path.exists(image_path):
        return Image.open(image_path)
    return None

default_sample_image = load_sample_image("Sample 1")

def load_sample_image(choice):
    if choice in sample_images:
        image_path = sample_images[choice]
        return cv2.imread(image_path)[:, :, ::-1]  
    else:
        raise ValueError("Invalid sample selection.")


def process_image(sample_choice, uploaded_image, yolo_versions=["yolov5"]):
    print(sample_choice, upload_image)
    if uploaded_image is not None:
        image = uploaded_image  # Use the uploaded image
    else:
        # Otherwise, use the selected sample image
        image = load_sample_image(sample_choice)
    image = np.array(image)
    image = cv2.resize(image, (640, 640))
    result_images = []
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
    return result_images

with gr.Blocks() as interface:
    gr.Markdown("# <span style='color:white'>XAI: Visualize Object Detection of Your Models</span>")
    gr.Markdown("<span style='color:white'>Select a sample image to visualize object detection.</span>")
    default_sample = "Sample 1"
    
    # Inject CSS with gr.HTML to set the text color to white
    gr.HTML("""
    <style>
        body {
            background-color: black;
            color: white; /* Set text color to white */
        }
        .gradio-container {
            color: white; /* Ensure Gradio components also have white text */
        }
    </style>
    """)
    
    with gr.Row(elem_classes="orchid-green-bg"):
        # Left side: Sample selection and upload image
        with gr.Column():
            sample_selection = gr.Radio(
                choices=list(sample_images.keys()),
                label="Select a Sample Image",
                type="value",
                value=default_sample,  # Set default selection
            )
            # Upload image below sample selection
            gr.Markdown("<span style='color:white'>**Or upload your own image:**</span>")
            upload_image = gr.Image(
                label="Upload an Image",
                type="pil",  # Correct type for file path compatibility
            )
        # Right side: Selected sample image display
        sample_display = gr.Image(
            value=load_sample_image(default_sample),  
            label="Selected Sample Image",
        )
    
    sample_selection.change(
        fn=load_sample_image,
        inputs=sample_selection,
        outputs=sample_display,
    )

    selected_models = gr.CheckboxGroup(
        choices=["yolov5", "yolov8s"],
        value=["yolov5"],
        label="Select Model(s)",
    )
    result_gallery = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500)

    gr.Button("Run").click(
        fn=process_image,
        inputs=[sample_selection, upload_image, selected_models],  # Include both options
        outputs=result_gallery,
    )

# Launch the interface without the `css` argument
interface.launch(share=True)