Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import json
|
@@ -7,6 +359,8 @@ import pdfplumber
|
|
7 |
import pytesseract
|
8 |
from pdf2image import convert_from_path
|
9 |
from huggingface_hub import InferenceClient
|
|
|
|
|
10 |
|
11 |
# Initialize with reliable free model
|
12 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -93,10 +447,8 @@ Extract all transactions from this bank statement with these exact fields:
|
|
93 |
- credit (format: 0.00)
|
94 |
- closing_balance (format: 0.00 or -0.00 for negative)
|
95 |
- category
|
96 |
-
|
97 |
Statement text:
|
98 |
{text[:3000]} [truncated if too long]
|
99 |
-
|
100 |
Return JSON with this exact structure:
|
101 |
{{
|
102 |
"transactions": [
|
@@ -111,7 +463,6 @@ Return JSON with this exact structure:
|
|
111 |
}}
|
112 |
]
|
113 |
}}
|
114 |
-
|
115 |
RULES:
|
116 |
1. Output ONLY the JSON object with no additional text
|
117 |
2. Keep amounts as strings with 2 decimal places
|
@@ -251,7 +602,7 @@ def format_number(value):
|
|
251 |
# If we can't convert to float, return original but clean it
|
252 |
return value.split('.')[0] + '.' + value.split('.')[1][:2].ljust(2, '0')
|
253 |
|
254 |
-
def process_file(file, is_scanned):
|
255 |
"""Main processing function"""
|
256 |
if not file:
|
257 |
return empty_df()
|
@@ -332,21 +683,96 @@ def empty_df():
|
|
332 |
return pd.DataFrame(columns=["Date", "Description", "Amount", "Debit",
|
333 |
"Credit", "Closing Balance", "Category"])
|
334 |
|
335 |
-
#
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
label="Parsed Transactions",
|
343 |
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
|
344 |
datatype=["date", "str", "number", "number", "number", "number", "str"]
|
345 |
-
)
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
if __name__ == "__main__":
|
352 |
interface.launch()
|
|
|
1 |
+
# import os
|
2 |
+
# import re
|
3 |
+
# import json
|
4 |
+
# import gradio as gr
|
5 |
+
# import pandas as pd
|
6 |
+
# import pdfplumber
|
7 |
+
# import pytesseract
|
8 |
+
# from pdf2image import convert_from_path
|
9 |
+
# from huggingface_hub import InferenceClient
|
10 |
+
|
11 |
+
# # Initialize with reliable free model
|
12 |
+
# hf_token = os.getenv("HF_TOKEN")
|
13 |
+
# client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)
|
14 |
+
|
15 |
+
# def extract_excel_data(file_path):
|
16 |
+
# """Extract text from Excel file"""
|
17 |
+
# df = pd.read_excel(file_path, engine='openpyxl')
|
18 |
+
# return df.to_string(index=False)
|
19 |
+
|
20 |
+
# def extract_text_from_pdf(pdf_path, is_scanned=False):
|
21 |
+
# """Extract text from PDF with fallback OCR"""
|
22 |
+
# try:
|
23 |
+
# # Try native PDF extraction first
|
24 |
+
# with pdfplumber.open(pdf_path) as pdf:
|
25 |
+
# text = ""
|
26 |
+
# for page in pdf.pages:
|
27 |
+
# # Extract tables first for structured data
|
28 |
+
# tables = page.extract_tables()
|
29 |
+
# for table in tables:
|
30 |
+
# for row in table:
|
31 |
+
# text += " | ".join(str(cell) for cell in row) + "\n"
|
32 |
+
# text += "\n"
|
33 |
+
|
34 |
+
# # Extract text for unstructured data
|
35 |
+
# page_text = page.extract_text()
|
36 |
+
# if page_text:
|
37 |
+
# text += page_text + "\n\n"
|
38 |
+
# return text
|
39 |
+
# except Exception as e:
|
40 |
+
# print(f"Native PDF extraction failed: {str(e)}")
|
41 |
+
# # Fallback to OCR for scanned PDFs
|
42 |
+
# images = convert_from_path(pdf_path, dpi=200)
|
43 |
+
# text = ""
|
44 |
+
# for image in images:
|
45 |
+
# text += pytesseract.image_to_string(image) + "\n"
|
46 |
+
# return text
|
47 |
+
|
48 |
+
# def parse_bank_statement(text, file_type):
|
49 |
+
# """Parse bank statement using LLM with fallback to rule-based parser"""
|
50 |
+
# # Clean text differently based on file type
|
51 |
+
# cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text)
|
52 |
+
|
53 |
+
# if file_type == 'pdf':
|
54 |
+
# # PDF-specific cleaning
|
55 |
+
# cleaned_text = re.sub(r'Page \d+ of \d+', '', cleaned_text, flags=re.IGNORECASE)
|
56 |
+
# cleaned_text = re.sub(r'CropBox.*?MediaBox', '', cleaned_text, flags=re.IGNORECASE)
|
57 |
+
|
58 |
+
# # Keep only lines that look like transactions
|
59 |
+
# transaction_lines = []
|
60 |
+
# for line in cleaned_text.split('\n'):
|
61 |
+
# if re.match(r'^\d{4}-\d{2}-\d{2}', line): # Date pattern
|
62 |
+
# transaction_lines.append(line)
|
63 |
+
# elif '|' in line and any(x in line for x in ['Date', 'Amount', 'Balance']):
|
64 |
+
# transaction_lines.append(line)
|
65 |
+
|
66 |
+
# cleaned_text = "\n".join(transaction_lines)
|
67 |
+
|
68 |
+
# print(f"Cleaned text sample: {cleaned_text[:200]}...")
|
69 |
+
|
70 |
+
# # Try rule-based parsing first for structured data
|
71 |
+
# rule_based_data = rule_based_parser(cleaned_text)
|
72 |
+
# if rule_based_data["transactions"]:
|
73 |
+
# print("Using rule-based parser results")
|
74 |
+
# return rule_based_data
|
75 |
+
|
76 |
+
# # Fallback to LLM for unstructured data
|
77 |
+
# print("Falling back to LLM parsing")
|
78 |
+
# return llm_parser(cleaned_text)
|
79 |
+
|
80 |
+
# def llm_parser(text):
|
81 |
+
# """LLM parser for unstructured text"""
|
82 |
+
# # Craft precise prompt with strict JSON formatting instructions
|
83 |
+
# prompt = f"""
|
84 |
+
# <|system|>
|
85 |
+
# You are a financial data parser. Extract transactions from bank statements and return ONLY valid JSON.
|
86 |
+
# </s>
|
87 |
+
# <|user|>
|
88 |
+
# Extract all transactions from this bank statement with these exact fields:
|
89 |
+
# - date (format: YYYY-MM-DD)
|
90 |
+
# - description
|
91 |
+
# - amount (format: 0.00)
|
92 |
+
# - debit (format: 0.00)
|
93 |
+
# - credit (format: 0.00)
|
94 |
+
# - closing_balance (format: 0.00 or -0.00 for negative)
|
95 |
+
# - category
|
96 |
+
|
97 |
+
# Statement text:
|
98 |
+
# {text[:3000]} [truncated if too long]
|
99 |
+
|
100 |
+
# Return JSON with this exact structure:
|
101 |
+
# {{
|
102 |
+
# "transactions": [
|
103 |
+
# {{
|
104 |
+
# "date": "2025-05-08",
|
105 |
+
# "description": "Company XYZ Payroll",
|
106 |
+
# "amount": "8315.40",
|
107 |
+
# "debit": "0.00",
|
108 |
+
# "credit": "8315.40",
|
109 |
+
# "closing_balance": "38315.40",
|
110 |
+
# "category": "Salary"
|
111 |
+
# }}
|
112 |
+
# ]
|
113 |
+
# }}
|
114 |
+
|
115 |
+
# RULES:
|
116 |
+
# 1. Output ONLY the JSON object with no additional text
|
117 |
+
# 2. Keep amounts as strings with 2 decimal places
|
118 |
+
# 3. For missing values, use empty strings
|
119 |
+
# 4. Convert negative amounts to format "-123.45"
|
120 |
+
# 5. Map categories to: Salary, Groceries, Medical, Utilities, Entertainment, Dining, Misc
|
121 |
+
# </s>
|
122 |
+
# <|assistant|>
|
123 |
+
# """
|
124 |
+
|
125 |
+
# try:
|
126 |
+
# # Call LLM via Hugging Face Inference API
|
127 |
+
# response = client.text_generation(
|
128 |
+
# prompt,
|
129 |
+
# max_new_tokens=2000,
|
130 |
+
# temperature=0.01,
|
131 |
+
# stop=["</s>"] # Updated to 'stop' parameter
|
132 |
+
# )
|
133 |
+
# print(f"LLM Response: {response}")
|
134 |
+
|
135 |
+
# # Validate and clean JSON response
|
136 |
+
# response = response.strip()
|
137 |
+
# if not response.startswith('{'):
|
138 |
+
# # Find the first { and last } to extract JSON
|
139 |
+
# start_idx = response.find('{')
|
140 |
+
# end_idx = response.rfind('}')
|
141 |
+
# if start_idx != -1 and end_idx != -1:
|
142 |
+
# response = response[start_idx:end_idx+1]
|
143 |
+
|
144 |
+
# # Parse JSON and validate structure
|
145 |
+
# data = json.loads(response)
|
146 |
+
# if "transactions" not in data:
|
147 |
+
# raise ValueError("Missing 'transactions' key in JSON")
|
148 |
+
|
149 |
+
# return data
|
150 |
+
# except Exception as e:
|
151 |
+
# print(f"LLM Error: {str(e)}")
|
152 |
+
# return {"transactions": []}
|
153 |
+
|
154 |
+
# def rule_based_parser(text):
|
155 |
+
# """Enhanced fallback parser for structured tables"""
|
156 |
+
# lines = [line.strip() for line in text.split('\n') if line.strip()]
|
157 |
+
|
158 |
+
# # Find header line - more flexible detection
|
159 |
+
# header_index = None
|
160 |
+
# header_patterns = [
|
161 |
+
# r'Date\b', r'Description\b', r'Amount\b',
|
162 |
+
# r'Debit\b', r'Credit\b', r'Closing\s*Balance\b', r'Category\b'
|
163 |
+
# ]
|
164 |
+
|
165 |
+
# # First try: Look for a full header line
|
166 |
+
# for i, line in enumerate(lines):
|
167 |
+
# if all(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns[:3]):
|
168 |
+
# header_index = i
|
169 |
+
# break
|
170 |
+
|
171 |
+
# # Second try: Look for any header indicators
|
172 |
+
# if header_index is None:
|
173 |
+
# for i, line in enumerate(lines):
|
174 |
+
# if any(re.search(pattern, line, re.IGNORECASE) for pattern in header_patterns):
|
175 |
+
# header_index = i
|
176 |
+
# break
|
177 |
+
|
178 |
+
# # Third try: Look for pipe-delimited headers
|
179 |
+
# if header_index is None:
|
180 |
+
# for i, line in enumerate(lines):
|
181 |
+
# if '|' in line and any(p in line for p in ['Date', 'Amount', 'Balance']):
|
182 |
+
# header_index = i
|
183 |
+
# break
|
184 |
+
|
185 |
+
# if header_index is None:
|
186 |
+
# return {"transactions": []}
|
187 |
+
|
188 |
+
# data_lines = lines[header_index + 1:]
|
189 |
+
# transactions = []
|
190 |
+
|
191 |
+
# for line in data_lines:
|
192 |
+
# # Handle both pipe-delimited and space-delimited formats
|
193 |
+
# if '|' in line:
|
194 |
+
# parts = [p.strip() for p in line.split('|') if p.strip()]
|
195 |
+
# else:
|
196 |
+
# # Space-delimited format - split by 2+ spaces
|
197 |
+
# parts = re.split(r'\s{2,}', line)
|
198 |
+
|
199 |
+
# # Skip lines that don't have enough parts
|
200 |
+
# if len(parts) < 7:
|
201 |
+
# continue
|
202 |
+
|
203 |
+
# try:
|
204 |
+
# # Handle transaction date validation
|
205 |
+
# if not re.match(r'\d{4}-\d{2}-\d{2}', parts[0]):
|
206 |
+
# continue
|
207 |
+
|
208 |
+
# transactions.append({
|
209 |
+
# "date": parts[0],
|
210 |
+
# "description": parts[1],
|
211 |
+
# "amount": format_number(parts[2]),
|
212 |
+
# "debit": format_number(parts[3]),
|
213 |
+
# "credit": format_number(parts[4]),
|
214 |
+
# "closing_balance": format_number(parts[5]),
|
215 |
+
# "category": parts[6]
|
216 |
+
# })
|
217 |
+
# except Exception as e:
|
218 |
+
# print(f"Error parsing line: {str(e)}")
|
219 |
+
|
220 |
+
# return {"transactions": transactions}
|
221 |
+
|
222 |
+
# def format_number(value):
|
223 |
+
# """Format numeric values consistently"""
|
224 |
+
# if not value or str(value).lower() in ['nan', 'nat']:
|
225 |
+
# return "0.00"
|
226 |
+
|
227 |
+
# # If it's already a number, format directly
|
228 |
+
# if isinstance(value, (int, float)):
|
229 |
+
# return f"{value:.2f}"
|
230 |
+
|
231 |
+
# # Clean string values
|
232 |
+
# value = str(value).replace(',', '').replace('$', '').strip()
|
233 |
+
|
234 |
+
# # Handle negative numbers in parentheses
|
235 |
+
# if '(' in value and ')' in value:
|
236 |
+
# value = '-' + value.replace('(', '').replace(')', '')
|
237 |
+
|
238 |
+
# # Handle empty values
|
239 |
+
# if not value:
|
240 |
+
# return "0.00"
|
241 |
+
|
242 |
+
# # Standardize decimal format
|
243 |
+
# if '.' not in value:
|
244 |
+
# value += '.00'
|
245 |
+
|
246 |
+
# # Ensure two decimal places
|
247 |
+
# try:
|
248 |
+
# num_value = float(value)
|
249 |
+
# return f"{num_value:.2f}"
|
250 |
+
# except ValueError:
|
251 |
+
# # If we can't convert to float, return original but clean it
|
252 |
+
# return value.split('.')[0] + '.' + value.split('.')[1][:2].ljust(2, '0')
|
253 |
+
|
254 |
+
# def process_file(file, is_scanned):
|
255 |
+
# """Main processing function"""
|
256 |
+
# if not file:
|
257 |
+
# return empty_df()
|
258 |
+
|
259 |
+
# file_path = file.name
|
260 |
+
# file_ext = os.path.splitext(file_path)[1].lower()
|
261 |
+
|
262 |
+
# try:
|
263 |
+
# if file_ext == '.xlsx':
|
264 |
+
# # Directly process Excel files without text conversion
|
265 |
+
# df = pd.read_excel(file_path, engine='openpyxl')
|
266 |
+
|
267 |
+
# # Normalize column names
|
268 |
+
# df.columns = df.columns.str.strip().str.lower()
|
269 |
+
|
270 |
+
# # Create mapping to expected columns
|
271 |
+
# col_mapping = {
|
272 |
+
# 'date': 'date',
|
273 |
+
# 'description': 'description',
|
274 |
+
# 'amount': 'amount',
|
275 |
+
# 'debit': 'debit',
|
276 |
+
# 'credit': 'credit',
|
277 |
+
# 'closing balance': 'closing_balance',
|
278 |
+
# 'closing': 'closing_balance',
|
279 |
+
# 'balance': 'closing_balance',
|
280 |
+
# 'category': 'category'
|
281 |
+
# }
|
282 |
+
|
283 |
+
# # Create output DataFrame with required columns
|
284 |
+
# output_df = pd.DataFrame()
|
285 |
+
# for col in ['date', 'description', 'amount', 'debit', 'credit', 'closing_balance', 'category']:
|
286 |
+
# if col in df.columns:
|
287 |
+
# output_df[col] = df[col]
|
288 |
+
# elif any(alias in col_mapping and col_mapping[alias] == col for alias in df.columns):
|
289 |
+
# # Find alias
|
290 |
+
# for alias in df.columns:
|
291 |
+
# if alias in col_mapping and col_mapping[alias] == col:
|
292 |
+
# output_df[col] = df[alias]
|
293 |
+
# break
|
294 |
+
# else:
|
295 |
+
# output_df[col] = ""
|
296 |
+
|
297 |
+
# # Format numeric columns
|
298 |
+
# for col in ['amount', 'debit', 'credit', 'closing_balance']:
|
299 |
+
# output_df[col] = output_df[col].apply(format_number)
|
300 |
+
|
301 |
+
# # Rename columns for display
|
302 |
+
# output_df.columns = ["Date", "Description", "Amount", "Debit",
|
303 |
+
# "Credit", "Closing Balance", "Category"]
|
304 |
+
# return output_df
|
305 |
+
|
306 |
+
# elif file_ext == '.pdf':
|
307 |
+
# text = extract_text_from_pdf(file_path, is_scanned=is_scanned)
|
308 |
+
# parsed_data = parse_bank_statement(text, 'pdf')
|
309 |
+
# df = pd.DataFrame(parsed_data["transactions"])
|
310 |
+
|
311 |
+
# # Ensure all required columns exist
|
312 |
+
# required_cols = ["date", "description", "amount", "debit",
|
313 |
+
# "credit", "closing_balance", "category"]
|
314 |
+
# for col in required_cols:
|
315 |
+
# if col not in df.columns:
|
316 |
+
# df[col] = ""
|
317 |
+
|
318 |
+
# # Format columns properly
|
319 |
+
# df.columns = ["Date", "Description", "Amount", "Debit",
|
320 |
+
# "Credit", "Closing Balance", "Category"]
|
321 |
+
# return df
|
322 |
+
|
323 |
+
# else:
|
324 |
+
# return empty_df()
|
325 |
+
|
326 |
+
# except Exception as e:
|
327 |
+
# print(f"Processing error: {str(e)}")
|
328 |
+
# return empty_df()
|
329 |
+
|
330 |
+
# def empty_df():
|
331 |
+
# """Return empty DataFrame with correct columns"""
|
332 |
+
# return pd.DataFrame(columns=["Date", "Description", "Amount", "Debit",
|
333 |
+
# "Credit", "Closing Balance", "Category"])
|
334 |
+
|
335 |
+
# # Gradio Interface
|
336 |
+
# interface = gr.Interface(
|
337 |
+
# fn=process_file,
|
338 |
+
# inputs=[
|
339 |
+
# gr.File(label="Upload Bank Statement (PDF/Excel)")
|
340 |
+
# ],
|
341 |
+
# outputs=gr.Dataframe(
|
342 |
+
# label="Parsed Transactions",
|
343 |
+
# headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
|
344 |
+
# datatype=["date", "str", "number", "number", "number", "number", "str"]
|
345 |
+
# ),
|
346 |
+
# title="AI Bank Statement Parser",
|
347 |
+
# description="Extract structured transaction data from PDF/Excel bank statements",
|
348 |
+
# allow_flagging="never"
|
349 |
+
# )
|
350 |
+
|
351 |
+
# if __name__ == "__main__":
|
352 |
+
# interface.launch()
|
353 |
import os
|
354 |
import re
|
355 |
import json
|
|
|
359 |
import pytesseract
|
360 |
from pdf2image import convert_from_path
|
361 |
from huggingface_hub import InferenceClient
|
362 |
+
from fpdf import FPDF # Added for PDF generation
|
363 |
+
import tempfile # Added for temporary file handling
|
364 |
|
365 |
# Initialize with reliable free model
|
366 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
447 |
- credit (format: 0.00)
|
448 |
- closing_balance (format: 0.00 or -0.00 for negative)
|
449 |
- category
|
|
|
450 |
Statement text:
|
451 |
{text[:3000]} [truncated if too long]
|
|
|
452 |
Return JSON with this exact structure:
|
453 |
{{
|
454 |
"transactions": [
|
|
|
463 |
}}
|
464 |
]
|
465 |
}}
|
|
|
466 |
RULES:
|
467 |
1. Output ONLY the JSON object with no additional text
|
468 |
2. Keep amounts as strings with 2 decimal places
|
|
|
602 |
# If we can't convert to float, return original but clean it
|
603 |
return value.split('.')[0] + '.' + value.split('.')[1][:2].ljust(2, '0')
|
604 |
|
605 |
+
def process_file(file, is_scanned=False):
|
606 |
"""Main processing function"""
|
607 |
if not file:
|
608 |
return empty_df()
|
|
|
683 |
return pd.DataFrame(columns=["Date", "Description", "Amount", "Debit",
|
684 |
"Credit", "Closing Balance", "Category"])
|
685 |
|
686 |
+
# New function to generate PDF from DataFrame
|
687 |
+
def generate_pdf(df):
|
688 |
+
"""Generate PDF from DataFrame and return file path"""
|
689 |
+
if df.empty:
|
690 |
+
return None
|
691 |
+
|
692 |
+
# Create a PDF
|
693 |
+
pdf = FPDF()
|
694 |
+
pdf.add_page()
|
695 |
+
pdf.set_font("Arial", size=8) # Smaller font to fit more data
|
696 |
+
|
697 |
+
# Set column widths
|
698 |
+
col_widths = [22, 65, 20, 15, 15, 25, 20] # Adjusted to fit all columns
|
699 |
+
|
700 |
+
# Headers
|
701 |
+
headers = df.columns.tolist()
|
702 |
+
for i, header in enumerate(headers):
|
703 |
+
pdf.cell(col_widths[i], 10, header, border=1)
|
704 |
+
pdf.ln()
|
705 |
+
|
706 |
+
# Data
|
707 |
+
for _, row in df.iterrows():
|
708 |
+
for i, col in enumerate(headers):
|
709 |
+
# Truncate long descriptions
|
710 |
+
value = str(row[col])
|
711 |
+
if headers[i] == "Description" and len(value) > 30:
|
712 |
+
value = value[:27] + "..."
|
713 |
+
pdf.cell(col_widths[i], 10, value, border=1)
|
714 |
+
pdf.ln()
|
715 |
+
|
716 |
+
# Save to temporary file
|
717 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False)
|
718 |
+
temp_file.close()
|
719 |
+
pdf.output(temp_file.name)
|
720 |
+
return temp_file.name
|
721 |
+
|
722 |
+
# Modified Gradio Interface
|
723 |
+
with gr.Blocks() as interface: # Changed to Blocks for more control
|
724 |
+
gr.Markdown("## AI Bank Statement Parser")
|
725 |
+
gr.Markdown("Extract structured transaction data from PDF/Excel bank statements")
|
726 |
+
|
727 |
+
# File input
|
728 |
+
file_input = gr.File(label="Upload Bank Statement (PDF/Excel)")
|
729 |
+
|
730 |
+
# Output dataframe
|
731 |
+
output_df = gr.Dataframe(
|
732 |
label="Parsed Transactions",
|
733 |
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"],
|
734 |
datatype=["date", "str", "number", "number", "number", "number", "str"]
|
735 |
+
)
|
736 |
+
|
737 |
+
# State to store the processed DataFrame
|
738 |
+
state_df = gr.State(value=pd.DataFrame())
|
739 |
+
|
740 |
+
# Download button (initially hidden)
|
741 |
+
download_btn = gr.DownloadButton(
|
742 |
+
"Download as PDF",
|
743 |
+
visible=False,
|
744 |
+
elem_classes="download-btn"
|
745 |
+
)
|
746 |
+
|
747 |
+
# Process file and update state
|
748 |
+
def process_and_store(file):
|
749 |
+
df = process_file(file)
|
750 |
+
return df, df, gr.DownloadButton(visible=not df.empty)
|
751 |
+
|
752 |
+
# Connect components
|
753 |
+
file_input.change(
|
754 |
+
process_and_store,
|
755 |
+
inputs=[file_input],
|
756 |
+
outputs=[output_df, state_df, download_btn]
|
757 |
+
)
|
758 |
+
|
759 |
+
# Generate PDF when download button is clicked
|
760 |
+
def on_download_click(df):
|
761 |
+
return generate_pdf(df)
|
762 |
+
|
763 |
+
download_btn.click(
|
764 |
+
on_download_click,
|
765 |
+
inputs=[state_df],
|
766 |
+
outputs=[download_btn]
|
767 |
+
)
|
768 |
+
|
769 |
+
# Add custom CSS for the download button position
|
770 |
+
interface.css = """
|
771 |
+
.download-btn {
|
772 |
+
margin-top: 20px !important;
|
773 |
+
margin-bottom: 30px !important;
|
774 |
+
}
|
775 |
+
"""
|
776 |
|
777 |
if __name__ == "__main__":
|
778 |
interface.launch()
|