Spaces:
Sleeping
Sleeping
import os | |
import re | |
import json | |
import gradio as gr | |
import pandas as pd | |
import pdfplumber | |
import pytesseract | |
from pdf2image import convert_from_path | |
from huggingface_hub import InferenceClient | |
# Initialize Hugging Face Inference Client with a free model | |
hf_token = os.getenv("HF_TOKEN") | |
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=hf_token) | |
def extract_excel_data(file_path): | |
"""Extract text from Excel file""" | |
df = pd.read_excel(file_path, engine='openpyxl') | |
return df.to_string(index=False) | |
def extract_text_from_pdf(pdf_path, is_scanned=False): | |
"""Extract text from PDF with fallback OCR""" | |
try: | |
# Try native PDF extraction first | |
with pdfplumber.open(pdf_path) as pdf: | |
text = "" | |
for page in pdf.pages: | |
text += page.extract_text() + "\n" | |
return text | |
except Exception as e: | |
print(f"Native PDF extraction failed: {str(e)}") | |
# Fallback to OCR for scanned PDFs | |
images = convert_from_path(pdf_path, dpi=200) | |
text = "" | |
for image in images: | |
text += pytesseract.image_to_string(image) + "\n" | |
return text | |
def parse_bank_statement(text): | |
"""Parse bank statement using LLM with fallback to rule-based parser""" | |
cleaned_text = re.sub(r'[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]', '', text) | |
print(f"Original text sample: {cleaned_text[:200]}...") | |
# Craft precise prompt for LLM with proper JSON escaping | |
prompt = f""" | |
You are a financial data parser. Extract transactions from bank statements. | |
Given this bank statement text: | |
{cleaned_text} | |
Extract all transactions with these fields: | |
- Date | |
- Description | |
- Amount | |
- Debit | |
- Credit | |
- Closing Balance | |
- Category | |
Return JSON with "transactions" array containing these fields. | |
Example format: | |
{{ | |
"transactions": [ | |
{{ | |
"date": "2025-05-08", | |
"description": "Company XYZ Payroll", | |
"amount": "8315.40", | |
"debit": "0.00", | |
"credit": "8315.40", | |
"closing_balance": "38315.40", | |
"category": "Salary" | |
}}, | |
{{ | |
"date": "2025-05-19", | |
"description": "Whole Foods", | |
"amount": "142.21", | |
"debit": "142.21", | |
"credit": "0.00", | |
"closing_balance": "38173.19", | |
"category": "Groceries" | |
}} | |
] | |
}} | |
Rules: | |
1. Ensure numeric fields have valid numbers (e.g., "0.00" instead of "-") | |
2. Convert negative balances to standard format (e.g., "-2421.72") | |
3. Map category names consistently (e.g., "Groceries", "Medical", "Utilities") | |
4. Only return valid JSON with no additional text | |
""" | |
try: | |
# Call LLM via Hugging Face Inference API | |
response = client.text_generation( | |
prompt, | |
max_new_tokens=2000, | |
temperature=0.1, | |
stop_sequences=["</s>"] | |
) | |
print(f"LLM Response: {response}") | |
# Extract JSON from response (remove non-JSON prefixes/suffixes) | |
json_match = re.search(r'\{.*\}', response, re.DOTALL) | |
if json_match: | |
return json.loads(json_match.group()) | |
return json.loads(response) | |
except Exception as e: | |
print(f"LLM Error: {str(e)}") | |
# Fallback to rule-based parser | |
return rule_based_parser(cleaned_text) | |
def rule_based_parser(text): | |
"""Fallback parser for structured tables with pipe delimiters""" | |
lines = [line.strip() for line in text.split('\n') if line.strip()] | |
# Find header line containing '| Date' | |
header_index = None | |
for i, line in enumerate(lines): | |
if re.search(r'\|Date|Date\|', line, re.IGNORECASE): | |
header_index = i | |
break | |
if header_index is None or header_index + 1 >= len(lines): | |
return {"transactions": []} | |
data_lines = lines[header_index + 1:] | |
transactions = [] | |
for line in data_lines: | |
if not '|' in line: | |
continue | |
parts = [p.strip() for p in line.split('|') if p.strip()] | |
if len(parts) < 7: | |
continue | |
try: | |
# Handle numeric values consistently | |
transactions.append({ | |
"date": parts[0], | |
"description": parts[1], | |
"amount": format_number(parts[2]), | |
"debit": format_number(parts[3]), | |
"credit": format_number(parts[4]), | |
"closing_balance": format_number(parts[5]), | |
"category": parts[6] | |
}) | |
except Exception as e: | |
print(f"Error parsing line: {str(e)}") | |
return {"transactions": transactions} | |
def format_number(value): | |
"""Format numeric values consistently""" | |
value = value.replace(',', '') | |
if re.match(r'^-?\d+(\.\d+)?$', value): | |
return f"{float(value):.2f}" | |
return value | |
def process_file(file, is_scanned): | |
"""Main processing function""" | |
if not file: | |
return pd.DataFrame(columns=[ | |
"Date", "Description", "Amount", "Debit", | |
"Credit", "Closing Balance", "Category" | |
]) | |
file_path = file.name | |
file_ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if file_ext == '.xlsx': | |
text = extract_excel_data(file_path) | |
elif file_ext == '.pdf': | |
text = extract_text_from_pdf(file_path, is_scanned=is_scanned) | |
else: | |
return pd.DataFrame(columns=[ | |
"Date", "Description", "Amount", "Debit", | |
"Credit", "Closing Balance", "Category" | |
]) | |
parsed_data = parse_bank_statement(text) | |
df = pd.DataFrame(parsed_data["transactions"]) | |
# Ensure all required columns exist | |
required_cols = ["date", "description", "amount", "debit", | |
"credit", "closing_balance", "category"] | |
for col in required_cols: | |
if col not in df.columns: | |
df[col] = "" | |
df.columns = ["Date", "Description", "Amount", "Debit", | |
"Credit", "Closing Balance", "Category"] | |
return df | |
except Exception as e: | |
print(f"Processing error: {str(e)}") | |
# Return empty DataFrame with correct columns on error | |
return pd.DataFrame(columns=[ | |
"Date", "Description", "Amount", "Debit", | |
"Credit", "Closing Balance", "Category" | |
]) | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=process_file, | |
inputs=[ | |
gr.File(label="Upload Bank Statement (PDF/Excel)"), | |
gr.Checkbox(label="Is Scanned PDF? (Use OCR)") | |
], | |
outputs=gr.Dataframe( | |
label="Parsed Transactions", | |
headers=["Date", "Description", "Amount", "Debit", "Credit", "Closing Balance", "Category"] | |
), | |
title="AI Bank Statement Parser", | |
description="Extract structured transaction data from PDF/Excel bank statements using LLM and hybrid parsing techniques.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
interface.launch() |