File size: 11,309 Bytes
c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 b65930c c32f190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import math
import torch
import torch.nn as nn
# FFN
def ConsisIDFeedForward(dim, mult=4):
"""
Creates a consistent ID feedforward block consisting of layer normalization,
two linear layers, and a GELU activation.
Args:
dim (int): The input dimension of the tensor.
mult (int, optional): Multiplier for the inner dimension. Default is 4.
Returns:
nn.Sequential: A sequence of layers comprising LayerNorm, Linear layers, and GELU.
"""
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
"""
Reshapes the input tensor for multi-head attention.
Args:
x (torch.Tensor): The input tensor with shape (batch_size, length, width).
heads (int): The number of attention heads.
Returns:
torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width).
"""
bs, length, width = x.shape
x = x.view(bs, length, heads, -1)
x = x.transpose(1, 2)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
"""
Implements the Perceiver attention mechanism with multi-head attention.
This layer takes two inputs: 'x' (image features) and 'latents' (latent features),
applying multi-head attention to both and producing an output tensor with the same
dimension as the input tensor 'x'.
Args:
dim (int): The input dimension.
dim_head (int, optional): The dimension of each attention head. Default is 64.
heads (int, optional): The number of attention heads. Default is 8.
kv_dim (int, optional): The key-value dimension. If None, `dim` is used for both keys and values.
"""
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Forward pass for Perceiver attention.
Args:
x (torch.Tensor): Image features tensor with shape (batch_size, num_pixels, D).
latents (torch.Tensor): Latent features tensor with shape (batch_size, num_latents, D).
Returns:
torch.Tensor: Output tensor after applying attention and transformation.
"""
# Apply normalization
x = self.norm1(x)
latents = self.norm2(latents)
b, seq_len, _ = latents.shape # Get batch size and sequence length
# Compute query, key, and value matrices
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
# Reshape the tensors for multi-head attention
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
# Reshape and return the final output
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
return self.to_out(out)
class LocalFacialExtractor(nn.Module):
def __init__(
self,
dim=1024,
depth=10,
dim_head=64,
heads=16,
num_id_token=5,
num_queries=32,
output_dim=2048,
ff_mult=4,
):
"""
Initializes the LocalFacialExtractor class.
Parameters:
- dim (int): The dimensionality of latent features.
- depth (int): Total number of PerceiverAttention and ConsisIDFeedForward layers.
- dim_head (int): Dimensionality of each attention head.
- heads (int): Number of attention heads.
- num_id_token (int): Number of tokens used for identity features.
- num_queries (int): Number of query tokens for the latent representation.
- output_dim (int): Output dimension after projection.
- ff_mult (int): Multiplier for the feed-forward network hidden dimension.
"""
super().__init__()
# Storing identity token and query information
self.num_id_token = num_id_token
self.dim = dim
self.num_queries = num_queries
assert depth % 5 == 0
self.depth = depth // 5
scale = dim**-0.5
# Learnable latent query embeddings
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale)
# Projection layer to map the latent output to the desired dimension
self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim))
# Attention and ConsisIDFeedForward layer stack
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer
ConsisIDFeedForward(dim=dim, mult=ff_mult), # ConsisIDFeedForward layer
]
)
)
# Mappings for each of the 5 different ViT features
for i in range(5):
setattr(
self,
f"mapping_{i}",
nn.Sequential(
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, dim),
),
)
# Mapping for identity embedding vectors
self.id_embedding_mapping = nn.Sequential(
nn.Linear(1280, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, dim * num_id_token),
)
def forward(self, x, y):
"""
Forward pass for LocalFacialExtractor.
Parameters:
- x (Tensor): The input identity embedding tensor of shape (batch_size, 1280).
- y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024).
Returns:
- Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim).
"""
# Repeat latent queries for the batch size
latents = self.latents.repeat(x.size(0), 1, 1)
# Map the identity embedding to tokens
x = self.id_embedding_mapping(x)
x = x.reshape(-1, self.num_id_token, self.dim)
# Concatenate identity tokens with the latent queries
latents = torch.cat((latents, x), dim=1)
# Process each of the 5 visual feature inputs
for i in range(5):
vit_feature = getattr(self, f"mapping_{i}")(y[i])
ctx_feature = torch.cat((x, vit_feature), dim=1)
# Pass through the PerceiverAttention and ConsisIDFeedForward layers
for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]:
latents = attn(ctx_feature, latents) + latents
latents = ff(latents) + latents
# Retain only the query latents
latents = latents[:, : self.num_queries]
# Project the latents to the output dimension
latents = latents @ self.proj_out
return latents
class PerceiverCrossAttention(nn.Module):
"""
Args:
dim (int): Dimension of the input latent and output. Default is 3072.
dim_head (int): Dimension of each attention head. Default is 128.
heads (int): Number of attention heads. Default is 16.
kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048.
Attributes:
scale (float): Scaling factor used in dot-product attention for numerical stability.
norm1 (nn.LayerNorm): Layer normalization applied to the input image features.
norm2 (nn.LayerNorm): Layer normalization applied to the latent features.
to_q (nn.Linear): Linear layer for projecting the latent features into queries.
to_kv (nn.Linear): Linear layer for projecting the input features into keys and values.
to_out (nn.Linear): Linear layer for outputting the final result after attention.
"""
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
# Layer normalization to stabilize training
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
self.norm2 = nn.LayerNorm(dim)
# Linear transformations to produce queries, keys, and values
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): Input image features with shape (batch_size, n1, D), where:
- batch_size (b): Number of samples in the batch.
- n1: Sequence length (e.g., number of patches or tokens).
- D: Feature dimension.
latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where:
- n2: Number of latent elements.
Returns:
torch.Tensor: Attention-modulated features with shape (batch_size, n2, D).
"""
# Apply layer normalization to the input image and latent features
x = self.norm1(x)
latents = self.norm2(latents)
b, seq_len, _ = latents.shape
# Compute queries, keys, and values
q = self.to_q(latents)
k, v = self.to_kv(x).chunk(2, dim=-1)
# Reshape tensors to split into attention heads
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# Compute attention weights
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
# Compute the output via weighted combination of values
out = weight @ v
# Reshape and permute to prepare for final linear transformation
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
return self.to_out(out) |