Spaces:
Sleeping
Sleeping
Update SA LORA pipe with newly trained model
Browse filesNow uses bert-base-uncased trained on 3k samples, better scores than previous
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoTokenizer, AutoModel
|
3 |
from peft.auto import AutoPeftModelForSequenceClassification
|
4 |
from tensorboard.backend.event_processing import event_accumulator
|
5 |
from peft import PeftModel
|
6 |
import plotly.express as px
|
7 |
import pandas as pd
|
8 |
|
9 |
-
tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
|
10 |
|
11 |
-
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
13 |
|
|
|
|
|
|
|
14 |
tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
|
15 |
# base_model = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall")
|
16 |
# peft_model_id = "rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small"
|
@@ -19,16 +19,22 @@ tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
|
|
19 |
|
20 |
|
21 |
# Handle calls to DistilBERT------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
|
23 |
distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
|
24 |
-
|
25 |
|
26 |
#text class models
|
27 |
def distilBERTnoLORA_fn(text):
|
28 |
return distilBERTnoLORA_pipe(text)
|
29 |
|
30 |
def distilBERTwithLORA_fn(text):
|
31 |
-
return
|
32 |
|
33 |
def distilBERTUntrained_fn(text):
|
34 |
return distilBERTUntrained_pipe(text)
|
@@ -425,7 +431,7 @@ with gr.Blocks(
|
|
425 |
btnSTSStats.click(fn=displayMetricStatsTextSTSNoLora, outputs=STSNoLoraStats)
|
426 |
btnSTSStats.click(fn=displayMetricStatsTextSTSLora, outputs=STSLoraStats)
|
427 |
|
428 |
-
with gr.Tab("More
|
429 |
gr.Markdown("stuff to add")
|
430 |
|
431 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification
|
3 |
from peft.auto import AutoPeftModelForSequenceClassification
|
4 |
from tensorboard.backend.event_processing import event_accumulator
|
5 |
from peft import PeftModel
|
6 |
import plotly.express as px
|
7 |
import pandas as pd
|
8 |
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
+
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
|
12 |
+
#tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
13 |
+
tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
|
14 |
tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
|
15 |
# base_model = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall")
|
16 |
# peft_model_id = "rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small"
|
|
|
19 |
|
20 |
|
21 |
# Handle calls to DistilBERT------------------------------------------
|
22 |
+
base_model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
23 |
+
peft_model_id = "Intradiction/BERT-SA-LORA"
|
24 |
+
model = PeftModel.from_pretrained(model=base_model, model_id=peft_model_id)
|
25 |
+
sa_merged_model = model.merge_and_unload()
|
26 |
+
bbu_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
27 |
+
|
28 |
distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
|
29 |
distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
|
30 |
+
SentimentAnalysis_LORA_pipe = pipeline("sentiment-analysis", model=sa_merged_model, tokenizer=bbu_tokenizer)
|
31 |
|
32 |
#text class models
|
33 |
def distilBERTnoLORA_fn(text):
|
34 |
return distilBERTnoLORA_pipe(text)
|
35 |
|
36 |
def distilBERTwithLORA_fn(text):
|
37 |
+
return SentimentAnalysis_LORA_pipe(text)
|
38 |
|
39 |
def distilBERTUntrained_fn(text):
|
40 |
return distilBERTUntrained_pipe(text)
|
|
|
431 |
btnSTSStats.click(fn=displayMetricStatsTextSTSNoLora, outputs=STSNoLoraStats)
|
432 |
btnSTSStats.click(fn=displayMetricStatsTextSTSLora, outputs=STSLoraStats)
|
433 |
|
434 |
+
with gr.Tab("More information"):
|
435 |
gr.Markdown("stuff to add")
|
436 |
|
437 |
|