Spaces:
Sleeping
Sleeping
File size: 9,423 Bytes
0d23076 9e0ff12 0d23076 ffc18a3 5db0d3c ffc18a3 61357d4 ffc18a3 61357d4 9e0ff12 61357d4 ffc18a3 5db0d3c 61357d4 5db0d3c 87eebb0 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 9e0ff12 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 5db0d3c 61357d4 0d23076 9e0ff12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
from transformers import pipeline
# Handle calls to DistilBERT no LORA
distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
def distilBERTnoLORA_fn(text):
return distilBERTnoLORA_pipe(text)
def chat1(message,history):
history = history or []
message = message.lower()
if message.startswith("how many"):
response = ("1 to 10")
else:
response = ("whatever man whatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever man")
history.append((message, response))
return history, history
chatbot = gr.Chatbot()
chatbot1 = gr.Chatbot()
chatbot2 = gr.Chatbot()
with gr.Blocks(
title="",
) as demo:
gr.Markdown("""
<div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.grssigns.co.uk/wp-content/uploads/web-Header-Background.jpg);">
<img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.torontomu.ca/content/dam/tmumobile/images/TMU-Mobile-AppIcon.png"/>
<span style="margin-top: 40px;font-size: 36px ;font-family:fantasy;">Efficient Fine tuning Of Large Language Models</span>
<span style="margin-top: 10px;font-size: 14px;">By: Rahul Adams, Greylyn Gao, Rajevan Lograjh & Mahir Faisal</span>
<span style="margin-top: 5px;font-size: 14px;">Group Id: AR06 FLC: Alice Reuada</span>
</div>
""")
with gr.Tab("Text Classification"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Text Classification</h1>")
with gr.Row():
with gr.Column(scale=0.3,variant="panel"):
gr.Markdown("""
<h2>Specifciations</h2>
<p><b>Model:</b> Tiny Bert <br>
<b>Dataset:</b> IMDB Movie review dataset <br>
<b>NLP Task:</b> Text Classification</p>
<p>I don’t know why but I just enjoy doing this. Maybe it’s my way of dealing with stress or something but I just do it about once every week. Generally I’ll carry around a sack and creep around in a sort of crouch-walking position making goblin noises, then I’ll walk around my house and pick up various different “trinkets” and put them in my bag while saying stuff like “I’ll be having that” and laughing maniacally in my goblin voice (“trinkets” can include anything from stuff I find on the ground to cutlery or other utensils). The other day I was talking with my neighbours and they mentioned hearing weird noises like what I wrote about and I was just internally screaming the entire conversation.</p>
""")
with gr.Column(scale=0.3,variant="panel"):
inp = gr.Textbox(placeholder="Prompt",label= "Enter Query")
btn = gr.Button("Run")
gr.Examples(
[
"I thought this was a bit contrived",
"You would need to be a child to enjoy this",
"Drive more like Drive away",
],
inp,
label="Try asking",
)
with gr.Column():
with gr.Row(variant="panel"):
out = gr.Textbox(label= " Untrained Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Row(variant="panel"):
out1 = gr.Textbox(label= " Conventionaly Fine Tuned Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Row(variant="panel"):
out2 = gr.Textbox(label= " LoRA Fine Tuned Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
btn.click(fn=distilBERTnoLORA_fn, inputs=inp, outputs=out)
btn.click(fn=chat1, inputs=inp, outputs=out1)
btn.click(fn=chat1, inputs=inp, outputs=out2)
with gr.Tab("Natrual Language Infrencing"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Natual Languae Infrencing</h1>")
with gr.Row():
with gr.Column(scale=0.3, variant="panel"):
gr.Markdown("""
<h2>Specifciations</h2>
<p><b>Model:</b> ELECTRA Bert Small <br>
<b>Dataset:</b> Stanford Natural Language Inference Dataset <br>
<b>NLP Task:</b> Natual Languae Infrencing</p>
<p>insert information on training parameters here</p>
""")
with gr.Column(scale=0.3,variant="panel"):
inp = gr.Textbox(placeholder="Prompt",label= "Enter Query")
btn = gr.Button("Run")
gr.Examples(
[
"I thought this was a bit contrived",
"You would need to be a child to enjoy this",
"Drive more like Drive away",
],
inp,
label="Try asking",
)
with gr.Column():
with gr.Row(variant="panel"):
out = gr.Textbox(label= " Untrained Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Row(variant="panel"):
out1 = gr.Textbox(label= " Conventionaly Fine Tuned Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Row(variant="panel"):
out2 = gr.Textbox(label= " LoRA Fine Tuned Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Tab("Sematic Text Similarity"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Semantic Text Similarity</h1>")
with gr.Row():
with gr.Column(scale=0.3,variant="panel"):
gr.Markdown("""
<h2>Specifciations</h2>
<p><b>Model:</b> DeBERTa-v3-xsmall <br>
<b>Dataset:</b> Quora Question Pairs dataset <br>
<b>NLP Task:</b> Semantic Text Similarity</p>
<p>insert information on training parameters here</p>
""")
with gr.Column(scale=0.3,variant="panel"):
inp = gr.Textbox(placeholder="Prompt",label= "Enter Query")
btn = gr.Button("Run")
gr.Examples(
[
"I thought this was a bit contrived",
"You would need to be a child to enjoy this",
"Drive more like Drive away",
],
inp,
label="Try asking",
)
with gr.Column():
with gr.Row(variant="panel"):
out = gr.Textbox(label= " Untrained Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Row(variant="panel"):
out1 = gr.Textbox(label= " Conventionaly Fine Tuned Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Row(variant="panel"):
out2 = gr.Textbox(label= " LoRA Fine Tuned Model")
gr.Markdown("""<div>
<span><center><B>Training Information</B><center></span>
<span><br><br><br><br><br></span>
</div>""")
with gr.Tab("More information"):
gr.Markdown("stuff to add")
if __name__ == "__main__":
demo.launch() |