Spaces:
Sleeping
Sleeping
Commit
·
d064765
1
Parent(s):
b9ca64f
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ model = tf.keras.models.Sequential()
|
|
18 |
model.add(tf.keras.layers.Dense(1, activation="sigmoid", input_shape=(1,)))
|
19 |
model.summary()
|
20 |
|
21 |
-
|
22 |
|
23 |
|
24 |
@tf.function()
|
@@ -54,10 +54,12 @@ learning_rate = st.text_area('Learning rate', value=0.1, height=25)
|
|
54 |
|
55 |
prob_A = st.text_area('Click probability of ad A', 0.4, height=75)
|
56 |
|
57 |
-
|
58 |
|
59 |
epochs = st.text_area('Number of ad impressions (epochs)', 2000, height=75)
|
60 |
|
|
|
|
|
61 |
if st.button('Modell trainieren und Fit-Kurve darstellen'):
|
62 |
|
63 |
with st.spinner('Simulating the ad campaign may take a few seconds ...'):
|
@@ -73,10 +75,10 @@ if st.button('Modell trainieren und Fit-Kurve darstellen'):
|
|
73 |
# than Ad B with 50% click rate
|
74 |
# We consider the click rate as a measure of the reward for training
|
75 |
if action == False: # Action A
|
76 |
-
reward = float(np.random.random() <
|
77 |
|
78 |
if action == True: # Action B
|
79 |
-
reward = float(np.random.random() <
|
80 |
|
81 |
# The gradients obtained above are multiplied with the acquired reward
|
82 |
# Gradients for actions that lead to clicks are kept unchanged,
|
|
|
18 |
model.add(tf.keras.layers.Dense(1, activation="sigmoid", input_shape=(1,)))
|
19 |
model.summary()
|
20 |
|
21 |
+
|
22 |
|
23 |
|
24 |
@tf.function()
|
|
|
54 |
|
55 |
prob_A = st.text_area('Click probability of ad A', 0.4, height=75)
|
56 |
|
57 |
+
prob_B = st.text_area('Click probability of ad B', 0.5, height=75)
|
58 |
|
59 |
epochs = st.text_area('Number of ad impressions (epochs)', 2000, height=75)
|
60 |
|
61 |
+
information_for_plotting = np.zeros((epochs, 10))
|
62 |
+
|
63 |
if st.button('Modell trainieren und Fit-Kurve darstellen'):
|
64 |
|
65 |
with st.spinner('Simulating the ad campaign may take a few seconds ...'):
|
|
|
75 |
# than Ad B with 50% click rate
|
76 |
# We consider the click rate as a measure of the reward for training
|
77 |
if action == False: # Action A
|
78 |
+
reward = float(np.random.random() < prob_A)
|
79 |
|
80 |
if action == True: # Action B
|
81 |
+
reward = float(np.random.random() < prob_B)
|
82 |
|
83 |
# The gradients obtained above are multiplied with the acquired reward
|
84 |
# Gradients for actions that lead to clicks are kept unchanged,
|