Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,038 Bytes
38d21b1 7e93159 38d21b1 7e93159 38d21b1 7e93159 38d21b1 25434bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import spaces
from cumo.model.builder import load_pretrained_model
from cumo.mm_utils import process_images, tokenizer_image_token
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
import torch
from PIL import Image
model_path = "BenkHel/CumoThesis"
model_base = None
model_name = "CumoThesis" # oder "BenkHel/CumoThesis"
load_8bit = False
load_4bit = False
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path, model_base, model_name, load_8bit, load_4bit, device, use_flash_attn=False
)
PROMPT = "What material is this item and how is it disposed of?"
PROMPT_WITH_IMAGE = f"{DEFAULT_IMAGE_TOKEN} {PROMPT}"
@spaces.GPU
def classify_image(image):
if image is None:
return "Please upload an image."
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
images = process_images([image], image_processor, model.config)
images = [img.to(device, dtype=torch.float16) for img in images]
image_args = {"images": images}
input_ids = tokenizer_image_token(PROMPT_WITH_IMAGE, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)
with torch.no_grad():
outputs = model.generate(
inputs=input_ids,
max_new_tokens=128,
pad_token_id=tokenizer.eos_token_id,
**image_args
)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = output_text[len(PROMPT):].strip() if output_text.startswith(PROMPT) else output_text
return answer
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil", label="Upload an image of a waste item"),
outputs=gr.Textbox(label="Classification & Disposal Recommendation"),
title="CuMo Waste Classifier",
description="Upload a photo of a household waste item. The model will classify the material and recommend how to dispose of it."
)
if __name__ == "__main__":
iface.launch()
|