Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from pathlib import Path
|
|
5 |
import gradio as gr
|
6 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
7 |
import torch
|
8 |
-
from PIL import Image
|
9 |
import requests
|
10 |
|
11 |
# Load environment variables from .env file
|
@@ -78,6 +78,25 @@ def upload_file(files):
|
|
78 |
response = generate_gemini_response(input_prompt, file_paths[0])
|
79 |
return file_paths[0], response
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
with gr.Blocks() as demo:
|
82 |
header = gr.Label("RADARPICK: Vous avez été radarisé!")
|
83 |
image_output = gr.Image()
|
@@ -89,33 +108,12 @@ with gr.Blocks() as demo:
|
|
89 |
def process_generate(files):
|
90 |
if not files:
|
91 |
return None, "Image not uploaded"
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
upload_button.upload(fn=lambda files: files[0].name if files else None, inputs=[upload_button], outputs=image_output)
|
95 |
generate_button.click(fn=process_generate, inputs=[upload_button], outputs=[image_output, file_output])
|
96 |
|
97 |
demo.launch()
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
102 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
103 |
-
|
104 |
-
# you can specify the revision tag if you don't want the timm dependency
|
105 |
-
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
106 |
-
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
107 |
-
|
108 |
-
inputs = processor(images=image, return_tensors="pt")
|
109 |
-
outputs = model(**inputs)
|
110 |
-
|
111 |
-
# convert outputs (bounding boxes and class logits) to COCO API
|
112 |
-
# let's only keep detections with score > 0.9
|
113 |
-
target_sizes = torch.tensor([image.size[::-1]])
|
114 |
-
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
115 |
-
|
116 |
-
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
117 |
-
box = [round(i, 2) for i in box.tolist()]
|
118 |
-
print(
|
119 |
-
f"Detected {model.config.id2label[label.item()]} with confidence "
|
120 |
-
f"{round(score.item(), 3)} at location {box}"
|
121 |
-
)
|
|
|
5 |
import gradio as gr
|
6 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
7 |
import torch
|
8 |
+
from PIL import Image, ImageDraw
|
9 |
import requests
|
10 |
|
11 |
# Load environment variables from .env file
|
|
|
78 |
response = generate_gemini_response(input_prompt, file_paths[0])
|
79 |
return file_paths[0], response
|
80 |
|
81 |
+
# Object detection part
|
82 |
+
def detect_objects(image):
|
83 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
84 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
85 |
+
|
86 |
+
inputs = processor(images=image, return_tensors="pt")
|
87 |
+
outputs = model(**inputs)
|
88 |
+
|
89 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
90 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
91 |
+
|
92 |
+
draw = ImageDraw.Draw(image)
|
93 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
94 |
+
box = [round(i, 2) for i in box.tolist()]
|
95 |
+
draw.rectangle(box, outline="red", width=3)
|
96 |
+
draw.text((box[0], box[1]), f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}", fill="red")
|
97 |
+
|
98 |
+
return image
|
99 |
+
|
100 |
with gr.Blocks() as demo:
|
101 |
header = gr.Label("RADARPICK: Vous avez été radarisé!")
|
102 |
image_output = gr.Image()
|
|
|
108 |
def process_generate(files):
|
109 |
if not files:
|
110 |
return None, "Image not uploaded"
|
111 |
+
file_path = files[0].name
|
112 |
+
image = Image.open(file_path)
|
113 |
+
detected_image = detect_objects(image)
|
114 |
+
return detected_image, upload_file(files)[1]
|
115 |
|
116 |
upload_button.upload(fn=lambda files: files[0].name if files else None, inputs=[upload_button], outputs=image_output)
|
117 |
generate_button.click(fn=process_generate, inputs=[upload_button], outputs=[image_output, file_output])
|
118 |
|
119 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|