Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
import google.generativeai as genai | |
from pathlib import Path | |
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
from PIL import Image, ImageDraw | |
import requests | |
# Load environment variables from .env file | |
load_dotenv() | |
# Get the API key from the environment | |
API_KEY = os.getenv("GOOGLE_API_KEY") | |
# Set up the generative AI model with the API key | |
genai.configure(api_key=API_KEY) | |
# Set up the generative model | |
generation_config = { | |
"temperature": 0.7, | |
"top_p": 0.9, | |
"top_k": 40, | |
"max_output_tokens": 4000, | |
} | |
safety_settings = [ | |
{ | |
"category": "HARM_CATEGORY_HARASSMENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_HATE_SPEECH", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
} | |
] | |
model = genai.GenerativeModel(model_name="gemini-1.5-flash-latest", | |
generation_config=generation_config, | |
safety_settings=safety_settings) | |
input_prompt_template = """give me the info of the car/truck (if an info is not available juste write "introuvable"): | |
- plate: | |
- model: | |
- color: """ | |
def input_image_setup(file_loc): | |
if not (img := Path(file_loc)).exists(): | |
raise FileNotFoundError(f"Could not find image: {img}") | |
image_parts = [ | |
{ | |
"mime_type": "image/jpeg", | |
"data": Path(file_loc).read_bytes() | |
} | |
] | |
return image_parts | |
def generate_gemini_response(input_prompt, image): | |
image_parts = [ | |
{ | |
"mime_type": "image/jpeg", | |
"data": image | |
} | |
] | |
prompt_parts = [input_prompt, image_parts[0]] | |
response = model.generate_content(prompt_parts) | |
return response.text | |
# Object detection part | |
def detect_objects(image): | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
detected_cars = [] | |
draw = ImageDraw.Draw(image) | |
# Loop through detections and filter only "car" class (ID 3 for COCO dataset) | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
if (model.config.id2label[label.item()] == 'car' or model.config.id2label[label.item()] == 'truck' ) and score.item() > 0.9: | |
box = [round(i, 2) for i in box.tolist()] | |
# Crop the detected car | |
cropped_car = image.crop(box) | |
# Convert the cropped image to bytes | |
cropped_car_bytes = image_to_bytes(cropped_car) | |
detected_cars.append((cropped_car_bytes, box)) | |
# Draw bounding box around the car | |
draw.rectangle(box, outline="red", width=3) | |
draw.text((box[0], box[1]), f"véhicule: {round(score.item(), 2)}", fill="red") | |
return image, detected_cars | |
def image_to_bytes(img): | |
# Convert a PIL image to bytes | |
from io import BytesIO | |
img_bytes = BytesIO() | |
img.save(img_bytes, format="JPEG") | |
img_bytes = img_bytes.getvalue() | |
return img_bytes | |
def upload_file(files): | |
if not files: | |
return None, "Image not uploaded" | |
file_paths = [file.name for file in files] | |
return file_paths[0] | |
def process_generate(files): | |
if not files: | |
return None, "Image not uploaded" | |
# Load the image | |
file_path = files[0].name | |
image = Image.open(file_path) | |
# Detect cars and return cropped car images | |
detected_image, detected_cars = detect_objects(image) | |
# Generate responses for each car | |
car_info_list = [] | |
for car_bytes, box in detected_cars: | |
car_info = generate_gemini_response(input_prompt_template, car_bytes) | |
car_info_list.append(f"véhicule aux coordonnées {box}:\n{car_info}\n") | |
return detected_image, "\n".join(car_info_list) | |
with gr.Blocks() as demo: | |
header = gr.Label("RADARPICK: Vous avez pris en flag!") | |
image_output = gr.Image() | |
upload_button = gr.UploadButton("Click to upload an image", file_types=["image"], file_count="multiple") | |
generate_button = gr.Button("Generate") | |
file_output = gr.Textbox(label="Generated Content") | |
upload_button.upload(fn=lambda files: files[0].name if files else None, inputs=[upload_button], outputs=image_output) | |
generate_button.click(fn=process_generate, inputs=[upload_button], outputs=[image_output, file_output]) | |
demo.launch() |