Spaces:
Sleeping
Sleeping
import torch | |
from PIL import Image | |
from transformers import AutoModel, AutoTokenizer | |
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True, | |
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager | |
model = model.eval().cuda() | |
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True) | |
image = Image.open('car.jpg').convert('RGB') | |
question = 'What is in the image?' | |
msgs = [{'role': 'user', 'content': [image, question]}] | |
res = model.chat( | |
image=None, | |
msgs=msgs, | |
tokenizer=tokenizer | |
) | |
print(res) | |
## if you want to use streaming, please make sure sampling=True and stream=True | |
## the model.chat will return a generator | |
res = model.chat( | |
image=None, | |
msgs=msgs, | |
tokenizer=tokenizer, | |
sampling=True, | |
stream=True | |
) | |
generated_text = "" | |
for new_text in res: | |
generated_text += new_text | |
print(new_text, flush=True, end='') | |
#import google.generativeai as genai | |
#import os | |
#genai.configure(api_key=os.environ["AIzaSyB5WiEJf_yLMD1dMQf305EAbaPTzF_QD-I"]) | |
#model = genai.GenerativeModel('gemini-1.5-flash') | |
#response = model.generate_content( | |
# text_input="the color of the car is ?", | |
# image_input="car.jpg" | |
#) | |
#print(response) |