Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,73 @@
|
|
1 |
-
# import streamlit as st
|
2 |
|
|
|
3 |
# from transformers import pipeline
|
4 |
|
5 |
-
#
|
|
|
6 |
|
|
|
7 |
# text = st.text_area('enter text: ')
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# if text:
|
10 |
-
# out = pipe(text)
|
11 |
-
# st.json(out)
|
12 |
import streamlit as st
|
13 |
from transformers import pipeline
|
14 |
|
15 |
# Load the model from the Hugging Face Hub
|
16 |
ner_pipeline = pipeline("ner", model="Beehzod/smart-finetuned-ner")
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# import streamlit as st
|
3 |
# from transformers import pipeline
|
4 |
|
5 |
+
# # Load the model from the Hugging Face Hub
|
6 |
+
# ner_pipeline = pipeline("ner", model="Beehzod/smart-finetuned-ner")
|
7 |
|
8 |
+
# # Example predictions
|
9 |
# text = st.text_area('enter text: ')
|
10 |
+
# results = ner_pipeline(text)
|
11 |
+
|
12 |
+
# for entity in results:
|
13 |
+
# print(f"Entity: {entity['word']}, Label: {entity['entity']}, Score: {entity['score']:.4f}")
|
14 |
+
# st.json(entity)
|
15 |
+
|
16 |
|
|
|
|
|
|
|
17 |
import streamlit as st
|
18 |
from transformers import pipeline
|
19 |
|
20 |
# Load the model from the Hugging Face Hub
|
21 |
ner_pipeline = pipeline("ner", model="Beehzod/smart-finetuned-ner")
|
22 |
|
23 |
+
# Helper function to combine subword tokens
|
24 |
+
def merge_entities(entities):
|
25 |
+
merged_entities = []
|
26 |
+
current_entity = {"word": "", "entity": None, "score": 0.0, "start": None, "end": None}
|
27 |
+
|
28 |
+
for token in entities:
|
29 |
+
# Check if it's a new entity or a continuation of the current one
|
30 |
+
if token['entity'].startswith('B-') or (current_entity['entity'] and token['entity'] != current_entity['entity']):
|
31 |
+
# Add the current entity to the list if it exists
|
32 |
+
if current_entity['entity']:
|
33 |
+
current_entity['score'] /= current_entity['count'] # average the score
|
34 |
+
del current_entity['count'] # remove helper key
|
35 |
+
merged_entities.append(current_entity)
|
36 |
+
|
37 |
+
# Start a new entity
|
38 |
+
current_entity = {
|
39 |
+
"word": token['word'].replace("##", ""),
|
40 |
+
"entity": token['entity'],
|
41 |
+
"score": token['score'],
|
42 |
+
"start": token['start'],
|
43 |
+
"end": token['end'],
|
44 |
+
"count": 1 # for averaging score later
|
45 |
+
}
|
46 |
+
else:
|
47 |
+
# Continue adding to the current entity
|
48 |
+
current_entity["word"] += token['word'].replace("##", "")
|
49 |
+
current_entity["end"] = token['end']
|
50 |
+
current_entity["score"] += token['score']
|
51 |
+
current_entity["count"] += 1
|
52 |
+
|
53 |
+
# Add the last entity
|
54 |
+
if current_entity['entity']:
|
55 |
+
current_entity['score'] /= current_entity['count']
|
56 |
+
del current_entity['count']
|
57 |
+
merged_entities.append(current_entity)
|
58 |
+
|
59 |
+
return merged_entities
|
60 |
+
|
61 |
+
# Get input text
|
62 |
+
text = st.text_area('Enter text: ')
|
63 |
|
64 |
+
# Run NER model if there is input text
|
65 |
+
if text:
|
66 |
+
results = ner_pipeline(text)
|
67 |
+
# Merge entities for clean output
|
68 |
+
merged_results = merge_entities(results)
|
69 |
+
|
70 |
+
# Display merged results
|
71 |
+
for entity in merged_results:
|
72 |
+
st.write(f"Entity: {entity['word']}, Label: {entity['entity']}, Score: {entity['score']:.4f}")
|
73 |
+
st.json(entity)
|