Update app.py
Browse files
app.py
CHANGED
@@ -1,117 +1,117 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torchvision import transforms, models
|
5 |
-
from PIL import Image
|
6 |
-
import torch.nn.functional as F
|
7 |
-
import gradio as gr
|
8 |
-
|
9 |
-
class TomatoLeafDiseaseDetectionApp:
|
10 |
-
def __init__(self):
|
11 |
-
self.class_names = [
|
12 |
-
'Pepper__bell___Bacterial_spot', 'Pepper__bell___healthy', 'Potato___Early_blight',
|
13 |
-
'Potato___Late_blight', 'Potato___healthy', 'Tomato_Bacterial_spot',
|
14 |
-
'Tomato_Early_blight', 'Tomato_Late_blight', 'Tomato_Leaf_Mold',
|
15 |
-
'Tomato_Septoria_leaf_spot', 'Tomato_Spider_mites_Two_spotted_spider_mite',
|
16 |
-
'Tomato__Target_Spot', 'Tomato__Tomato_YellowLeaf__Curl_Virus',
|
17 |
-
'Tomato__Tomato_mosaic_virus', 'Tomato_healthy'
|
18 |
-
]
|
19 |
-
|
20 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
self.model = self.load_model()
|
22 |
-
|
23 |
-
def load_model(self):
|
24 |
-
"""
|
25 |
-
Load the trained EfficientNet model with the weights for tomato leaf disease detection.
|
26 |
-
"""
|
27 |
-
# Define the model structure
|
28 |
-
base_model = models.efficientnet_b0(weights=None) # No pretrained weights
|
29 |
-
base_model.classifier = nn.Identity() # Remove the original classifier
|
30 |
-
feature_size = 1280 # EfficientNetB0 output feature size
|
31 |
-
|
32 |
-
model = nn.Sequential(
|
33 |
-
base_model,
|
34 |
-
nn.Dropout(0.3),
|
35 |
-
nn.Linear(feature_size, len(self.class_names))
|
36 |
-
)
|
37 |
-
|
38 |
-
# Load the model weights
|
39 |
-
model_path = "tomato_leaf_disease_model.pth" # Update this path
|
40 |
-
model.load_state_dict(torch.load(model_path, map_location=self.device))
|
41 |
-
model.to(self.device)
|
42 |
-
model.eval() # Set the model to evaluation mode
|
43 |
-
return model
|
44 |
-
|
45 |
-
def predict_disease(self, image_path):
|
46 |
-
"""
|
47 |
-
Predict the tomato leaf disease from the given image.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
image_path (str): Path to the input image.
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
tuple: Predicted disease name and confidence score.
|
54 |
-
"""
|
55 |
-
try:
|
56 |
-
# Image preprocessing
|
57 |
-
transform = transforms.Compose([
|
58 |
-
transforms.Resize((224, 224)),
|
59 |
-
transforms.ToTensor(),
|
60 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # Normalize for EfficientNet
|
61 |
-
])
|
62 |
-
image = Image.open(image_path).convert("RGB")
|
63 |
-
input_tensor = transform(image).unsqueeze(0).to(self.device)
|
64 |
-
|
65 |
-
# Perform prediction
|
66 |
-
with torch.no_grad():
|
67 |
-
outputs = self.model(input_tensor)
|
68 |
-
probabilities = F.softmax(outputs, dim=1)
|
69 |
-
predicted_class = probabilities.argmax(1)
|
70 |
-
confidence_score = probabilities[0, predicted_class.item()].item()
|
71 |
-
|
72 |
-
predicted_class_name = self.class_names[predicted_class.item()]
|
73 |
-
return predicted_class_name, confidence_score
|
74 |
-
except Exception as e:
|
75 |
-
return f"Error: {str(e)}", 0.0
|
76 |
-
|
77 |
-
def gradio_interface(self):
|
78 |
-
"""
|
79 |
-
Launch the Gradio interface for tomato leaf disease detection.
|
80 |
-
"""
|
81 |
-
def classify_image(image_path):
|
82 |
-
disease_name, confidence = self.predict_disease(image_path)
|
83 |
-
return disease_name, f"Confidence: {confidence:.2f}"
|
84 |
-
|
85 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
86 |
-
gr.HTML("<center><h1>Tomato Leaf Disease Detection</h1></center>")
|
87 |
-
|
88 |
-
with gr.Row():
|
89 |
-
input_image = gr.Image(type="filepath", label="Upload Leaf Image"
|
90 |
-
with gr.Column():
|
91 |
-
output_label = gr.Label(label="Predicted Disease")
|
92 |
-
confidence_text = gr.Textbox(label="Confidence Score")
|
93 |
-
|
94 |
-
with gr.Row():
|
95 |
-
button = gr.Button(value="Detect Disease")
|
96 |
-
|
97 |
-
button.click(
|
98 |
-
classify_image,
|
99 |
-
inputs=[input_image],
|
100 |
-
outputs=[output_label, confidence_text]
|
101 |
-
)
|
102 |
-
|
103 |
-
gr.Examples(
|
104 |
-
examples=[
|
105 |
-
"tomato_earlt_blight.jpg", # Replace with your example paths
|
106 |
-
"yellow_leaf_curl.jpg",
|
107 |
-
],
|
108 |
-
inputs=[input_image],
|
109 |
-
outputs=[output_label, confidence_text],
|
110 |
-
label="Example Images"
|
111 |
-
)
|
112 |
-
|
113 |
-
demo.launch(debug=True)
|
114 |
-
|
115 |
-
if __name__ == "__main__":
|
116 |
-
app = TomatoLeafDiseaseDetectionApp()
|
117 |
-
app.gradio_interface()
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import transforms, models
|
5 |
+
from PIL import Image
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
class TomatoLeafDiseaseDetectionApp:
|
10 |
+
def __init__(self):
|
11 |
+
self.class_names = [
|
12 |
+
'Pepper__bell___Bacterial_spot', 'Pepper__bell___healthy', 'Potato___Early_blight',
|
13 |
+
'Potato___Late_blight', 'Potato___healthy', 'Tomato_Bacterial_spot',
|
14 |
+
'Tomato_Early_blight', 'Tomato_Late_blight', 'Tomato_Leaf_Mold',
|
15 |
+
'Tomato_Septoria_leaf_spot', 'Tomato_Spider_mites_Two_spotted_spider_mite',
|
16 |
+
'Tomato__Target_Spot', 'Tomato__Tomato_YellowLeaf__Curl_Virus',
|
17 |
+
'Tomato__Tomato_mosaic_virus', 'Tomato_healthy'
|
18 |
+
]
|
19 |
+
|
20 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
self.model = self.load_model()
|
22 |
+
|
23 |
+
def load_model(self):
|
24 |
+
"""
|
25 |
+
Load the trained EfficientNet model with the weights for tomato leaf disease detection.
|
26 |
+
"""
|
27 |
+
# Define the model structure
|
28 |
+
base_model = models.efficientnet_b0(weights=None) # No pretrained weights
|
29 |
+
base_model.classifier = nn.Identity() # Remove the original classifier
|
30 |
+
feature_size = 1280 # EfficientNetB0 output feature size
|
31 |
+
|
32 |
+
model = nn.Sequential(
|
33 |
+
base_model,
|
34 |
+
nn.Dropout(0.3),
|
35 |
+
nn.Linear(feature_size, len(self.class_names))
|
36 |
+
)
|
37 |
+
|
38 |
+
# Load the model weights
|
39 |
+
model_path = "tomato_leaf_disease_model.pth" # Update this path
|
40 |
+
model.load_state_dict(torch.load(model_path, map_location=self.device))
|
41 |
+
model.to(self.device)
|
42 |
+
model.eval() # Set the model to evaluation mode
|
43 |
+
return model
|
44 |
+
|
45 |
+
def predict_disease(self, image_path):
|
46 |
+
"""
|
47 |
+
Predict the tomato leaf disease from the given image.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
image_path (str): Path to the input image.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
tuple: Predicted disease name and confidence score.
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
# Image preprocessing
|
57 |
+
transform = transforms.Compose([
|
58 |
+
transforms.Resize((224, 224)),
|
59 |
+
transforms.ToTensor(),
|
60 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # Normalize for EfficientNet
|
61 |
+
])
|
62 |
+
image = Image.open(image_path).convert("RGB")
|
63 |
+
input_tensor = transform(image).unsqueeze(0).to(self.device)
|
64 |
+
|
65 |
+
# Perform prediction
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = self.model(input_tensor)
|
68 |
+
probabilities = F.softmax(outputs, dim=1)
|
69 |
+
predicted_class = probabilities.argmax(1)
|
70 |
+
confidence_score = probabilities[0, predicted_class.item()].item()
|
71 |
+
|
72 |
+
predicted_class_name = self.class_names[predicted_class.item()]
|
73 |
+
return predicted_class_name, confidence_score
|
74 |
+
except Exception as e:
|
75 |
+
return f"Error: {str(e)}", 0.0
|
76 |
+
|
77 |
+
def gradio_interface(self):
|
78 |
+
"""
|
79 |
+
Launch the Gradio interface for tomato leaf disease detection.
|
80 |
+
"""
|
81 |
+
def classify_image(image_path):
|
82 |
+
disease_name, confidence = self.predict_disease(image_path)
|
83 |
+
return disease_name, f"Confidence: {confidence:.2f}"
|
84 |
+
|
85 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
86 |
+
gr.HTML("<center><h1>Tomato Leaf Disease Detection</h1></center>")
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
input_image = gr.Image(type="filepath", label="Upload Leaf Image")
|
90 |
+
with gr.Column():
|
91 |
+
output_label = gr.Label(label="Predicted Disease")
|
92 |
+
confidence_text = gr.Textbox(label="Confidence Score")
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
button = gr.Button(value="Detect Disease")
|
96 |
+
|
97 |
+
button.click(
|
98 |
+
classify_image,
|
99 |
+
inputs=[input_image],
|
100 |
+
outputs=[output_label, confidence_text]
|
101 |
+
)
|
102 |
+
|
103 |
+
gr.Examples(
|
104 |
+
examples=[
|
105 |
+
"tomato_earlt_blight.jpg", # Replace with your example paths
|
106 |
+
"yellow_leaf_curl.jpg",
|
107 |
+
],
|
108 |
+
inputs=[input_image],
|
109 |
+
outputs=[output_label, confidence_text],
|
110 |
+
label="Example Images"
|
111 |
+
)
|
112 |
+
|
113 |
+
demo.launch(debug=True)
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
app = TomatoLeafDiseaseDetectionApp()
|
117 |
+
app.gradio_interface()
|