Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
2 |
+
from langchain_community.vectorstores import FAISS
|
3 |
+
from langchain_community.chat_models import ChatOpenAI
|
4 |
+
from langchain_openai import AzureChatOpenAI,AzureOpenAIEmbeddings
|
5 |
+
from langchain.memory import ConversationBufferMemory
|
6 |
+
# from langchain.chains import ConversationChain
|
7 |
+
from langchain.chains import (
|
8 |
+
create_history_aware_retriever,
|
9 |
+
create_retrieval_chain,
|
10 |
+
)
|
11 |
+
from langchain_unstructured import UnstructuredLoader
|
12 |
+
from typing import List, Dict, Tuple
|
13 |
+
import gradio as gr
|
14 |
+
import validators
|
15 |
+
import requests
|
16 |
+
import mimetypes
|
17 |
+
import tempfile
|
18 |
+
import os
|
19 |
+
# from langchain.chains.question_answering import load_qa_chain
|
20 |
+
# from langchain.llms import OpenAI
|
21 |
+
from langchain.prompts import PromptTemplate
|
22 |
+
from langchain.prompts.prompt import PromptTemplate
|
23 |
+
import pandas as pd
|
24 |
+
# from langchain_experimental.agents.agent_toolkits import create_csv_agent
|
25 |
+
from langchain_experimental.agents import create_csv_agent
|
26 |
+
|
27 |
+
# from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
|
28 |
+
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
|
29 |
+
from langchain.agents.agent_types import AgentType
|
30 |
+
# from langchain.agents import create_csv_agent
|
31 |
+
from langchain import LLMChain
|
32 |
+
# from openai import AzureOpenAI
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
class ChatDocumentQA:
|
37 |
+
def __init__(self) -> None:
|
38 |
+
pass
|
39 |
+
|
40 |
+
def _get_empty_state(self) -> Dict[str, None]:
|
41 |
+
"""Create an empty knowledge base."""
|
42 |
+
return {"knowledge_base": None}
|
43 |
+
|
44 |
+
def _extract_text_from_pdfs(self, file_paths: List[str]) -> List[str]:
|
45 |
+
"""Extract text content from PDF files.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
file_paths (List[str]): List of file paths.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
List[str]: Extracted text from the PDFs.
|
52 |
+
"""
|
53 |
+
loader = UnstructuredLoader(file_paths)
|
54 |
+
docs = loader.load()
|
55 |
+
print("Docs:",docs)
|
56 |
+
return docs
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
def _get_content_from_url(self, urls: str) -> List[str]:
|
62 |
+
"""Fetch content from given URLs.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
urls (str): Comma-separated URLs.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
List[str]: List of text content fetched from the URLs.
|
69 |
+
"""
|
70 |
+
file_paths = []
|
71 |
+
for url in urls.split(','):
|
72 |
+
if validators.url(url):
|
73 |
+
# headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
|
74 |
+
r = requests.get(url)
|
75 |
+
if r.status_code != 200:
|
76 |
+
raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
|
77 |
+
content_type = r.headers.get("content-type")
|
78 |
+
file_extension = mimetypes.guess_extension(content_type)
|
79 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
|
80 |
+
temp_file.write(r.content)
|
81 |
+
file_paths.append(temp_file.name)
|
82 |
+
|
83 |
+
print("File_Paths:",file_paths)
|
84 |
+
docs = self._extract_text_from_pdfs(file_paths)
|
85 |
+
return docs
|
86 |
+
|
87 |
+
def _split_text_into_chunks(self, text: str) -> List[str]:
|
88 |
+
"""Split text into smaller chunks.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
text (str): Input text to be split.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
List[str]: List of smaller text chunks.
|
95 |
+
"""
|
96 |
+
text_splitter = RecursiveCharacterTextSplitter( chunk_size=6000, chunk_overlap=0)
|
97 |
+
|
98 |
+
chunks = text_splitter.split_documents(text)
|
99 |
+
|
100 |
+
return chunks
|
101 |
+
|
102 |
+
def _create_vector_store_from_text_chunks(self, text_chunks: List[str]) -> FAISS:
|
103 |
+
"""Create a vector store from text chunks.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
text_chunks (List[str]): List of text chunks.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
FAISS: Vector store created from the text chunks.
|
110 |
+
"""
|
111 |
+
embeddings = AzureOpenAIEmbeddings(
|
112 |
+
azure_deployment="text-embedding-3-large",
|
113 |
+
)
|
114 |
+
|
115 |
+
return FAISS.from_documents(documents=text_chunks, embedding=embeddings)
|
116 |
+
|
117 |
+
|
118 |
+
def _create_conversation_chain(self,vectorstore):
|
119 |
+
|
120 |
+
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
|
121 |
+
|
122 |
+
Chat History: {chat_history}
|
123 |
+
Follow Up Input: {question}
|
124 |
+
Standalone question:"""
|
125 |
+
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
126 |
+
|
127 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
128 |
+
|
129 |
+
# llm = ChatOpenAI(temperature=0)
|
130 |
+
llm=AzureChatOpenAI(azure_deployment = "GPT-4o")
|
131 |
+
|
132 |
+
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(),
|
133 |
+
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
|
134 |
+
memory=memory)
|
135 |
+
|
136 |
+
|
137 |
+
def _get_documents_knowledge_base(self, file_paths: List[str]) -> Tuple[str, Dict[str, FAISS]]:
|
138 |
+
"""Build knowledge base from uploaded files.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
file_paths (List[str]): List of file paths.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
Tuple[str, Dict]: Tuple containing a status message and the knowledge base.
|
145 |
+
"""
|
146 |
+
file_path = file_paths[0].name
|
147 |
+
file_extension = os.path.splitext(file_path)[1]
|
148 |
+
|
149 |
+
if file_extension == '.csv':
|
150 |
+
# agent = self.create_agent(file_path)
|
151 |
+
# tools = self.get_agent_tools(agent)
|
152 |
+
# memory,tools,prompt = self.create_memory_for_csv_qa(tools)
|
153 |
+
# agent_chain = self.create_agent_chain_for_csv_qa(memory,tools,prompt)
|
154 |
+
agent_chain = create_csv_agent(
|
155 |
+
AzureChatOpenAI(azure_deployment = "GPT-4o"),
|
156 |
+
file_path,
|
157 |
+
verbose=True,
|
158 |
+
allow_dangerous_code=True
|
159 |
+
)
|
160 |
+
return "file uploaded", {"knowledge_base": agent_chain}
|
161 |
+
|
162 |
+
else:
|
163 |
+
pdf_docs = [file_path.name for file_path in file_paths]
|
164 |
+
raw_text = self._extract_text_from_pdfs(pdf_docs)
|
165 |
+
text_chunks = self._split_text_into_chunks(raw_text)
|
166 |
+
vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
|
167 |
+
return "file uploaded", {"knowledge_base": vectorstore}
|
168 |
+
|
169 |
+
|
170 |
+
def _get_urls_knowledge_base(self, urls: str) -> Tuple[str, Dict[str, FAISS]]:
|
171 |
+
"""Build knowledge base from URLs.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
urls (str): Comma-separated URLs.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
Tuple[str, Dict]: Tuple containing a status message and the knowledge base.
|
178 |
+
"""
|
179 |
+
webpage_text = self._get_content_from_url(urls)
|
180 |
+
text_chunks = self._split_text_into_chunks(webpage_text)
|
181 |
+
vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
|
182 |
+
return "file uploaded", {"knowledge_base": vectorstore}
|
183 |
+
|
184 |
+
#************************
|
185 |
+
# csv qa
|
186 |
+
#************************
|
187 |
+
def create_agent(self,file_path):
|
188 |
+
agent_chain = create_csv_agent(
|
189 |
+
AzureChatOpenAI(azure_deployment = "GPT-4o"),
|
190 |
+
file_path,
|
191 |
+
verbose=True,
|
192 |
+
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
193 |
+
)
|
194 |
+
return agent_chain
|
195 |
+
def get_agent_tools(self,agent):
|
196 |
+
# search = agent
|
197 |
+
tools = [
|
198 |
+
Tool(
|
199 |
+
name="dataframe qa",
|
200 |
+
func=agent.run,
|
201 |
+
description="useful for when you need to answer questions about table data and dataframe data",
|
202 |
+
)
|
203 |
+
]
|
204 |
+
return tools
|
205 |
+
|
206 |
+
def create_memory_for_csv_qa(self,tools):
|
207 |
+
prefix = """Have a conversation with a human, answering the following questions about table data and dataframe data as best you can. You have access to the following tools:"""
|
208 |
+
suffix = """Begin!"
|
209 |
+
|
210 |
+
{chat_history}
|
211 |
+
Question: {input}
|
212 |
+
{agent_scratchpad}"""
|
213 |
+
|
214 |
+
prompt = ZeroShotAgent.create_prompt(
|
215 |
+
tools,
|
216 |
+
prefix=prefix,
|
217 |
+
suffix=suffix,
|
218 |
+
input_variables=["input", "chat_history", "agent_scratchpad"],
|
219 |
+
)
|
220 |
+
memory = ConversationBufferMemory(memory_key="chat_history",return_messages=True)
|
221 |
+
|
222 |
+
return memory,tools,prompt
|
223 |
+
|
224 |
+
def create_agent_chain_for_csv_qa(self,memory,tools,prompt):
|
225 |
+
|
226 |
+
llm_chain = LLMChain(llm=AzureChatOpenAI(azure_deployment = "GPT-4o"), prompt=prompt)
|
227 |
+
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
|
228 |
+
agent_chain = AgentExecutor.from_agent_and_tools(
|
229 |
+
agent=agent, tools=tools, verbose=True, memory=memory
|
230 |
+
)
|
231 |
+
|
232 |
+
return agent_chain
|
233 |
+
|
234 |
+
def _get_response(self, message: str, chat_history: List[Tuple[str, str]], state: Dict[str, FAISS],file_paths) -> Tuple[str, List[Tuple[str, str]]]:
|
235 |
+
"""Get a response from the chatbot.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
message (str): User's message/question.
|
239 |
+
chat_history (List[Tuple[str, str]]): List of chat history as tuples of (user_message, bot_response).
|
240 |
+
state (dict): State containing the knowledge base.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
Tuple[str, List[Tuple[str, str]]]: Tuple containing a status message and updated chat history.
|
244 |
+
"""
|
245 |
+
try:
|
246 |
+
if file_paths:
|
247 |
+
file_path = file_paths[0].name
|
248 |
+
file_extension = os.path.splitext(file_path)[1]
|
249 |
+
|
250 |
+
if file_extension == '.csv':
|
251 |
+
agent_chain = state["knowledge_base"]
|
252 |
+
response = agent_chain.run(input = message)
|
253 |
+
chat_history.append((message, response))
|
254 |
+
return "", chat_history
|
255 |
+
|
256 |
+
else:
|
257 |
+
vectorstore = state["knowledge_base"]
|
258 |
+
chat = self._create_conversation_chain(vectorstore)
|
259 |
+
response = chat({"question": message,"chat_history": chat_history})
|
260 |
+
chat_history.append((message, response["answer"]))
|
261 |
+
return "", chat_history
|
262 |
+
else:
|
263 |
+
vectorstore = state["knowledge_base"]
|
264 |
+
chat = self._create_conversation_chain(vectorstore)
|
265 |
+
response = chat({"question": message,"chat_history": chat_history})
|
266 |
+
chat_history.append((message, response["answer"]))
|
267 |
+
return "", chat_history
|
268 |
+
except:
|
269 |
+
chat_history.append((message, "Please Upload Document or URL"))
|
270 |
+
return "", chat_history
|
271 |
+
|
272 |
+
def gradio_interface(self) -> None:
|
273 |
+
"""Create a Gradio interface for the chatbot."""
|
274 |
+
with gr.Blocks(css="#textbox_id textarea {color: white}",theme='SherlockRamos/Feliz') as demo:
|
275 |
+
gr.HTML("""
|
276 |
+
<style>
|
277 |
+
.footer {
|
278 |
+
display: none !important;
|
279 |
+
}
|
280 |
+
footer {
|
281 |
+
display: none !important;
|
282 |
+
}
|
283 |
+
#foot {
|
284 |
+
display: none !important;
|
285 |
+
}
|
286 |
+
.svelte-1fzp3xt {
|
287 |
+
display: none !important;
|
288 |
+
}
|
289 |
+
#root > div > div > div {
|
290 |
+
padding-bottom: 0 !important;
|
291 |
+
}
|
292 |
+
.custom-footer {
|
293 |
+
text-align: center;
|
294 |
+
padding: 10px;
|
295 |
+
font-size: 14px;
|
296 |
+
color: #333;
|
297 |
+
}
|
298 |
+
</style>
|
299 |
+
""")
|
300 |
+
gr.HTML("""<h1 style="color:#000;margin-left:4in;padding-top:10px">Multi Document QA</h1></div>""")
|
301 |
+
state = gr.State(self._get_empty_state())
|
302 |
+
chatbot = gr.Chatbot()
|
303 |
+
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column(scale=0.85):
|
306 |
+
msg = gr.Textbox(label="Question", elem_id="textbox_id")
|
307 |
+
with gr.Column(scale=0.15):
|
308 |
+
file_output = gr.Textbox(label="File Status")
|
309 |
+
with gr.Row():
|
310 |
+
with gr.Column(scale=0.85):
|
311 |
+
clear = gr.ClearButton([msg, chatbot])
|
312 |
+
with gr.Column(scale=0.15):
|
313 |
+
upload_button = gr.UploadButton(
|
314 |
+
"Browse File",
|
315 |
+
file_types=[".txt", ".pdf", ".docx", ".csv"],
|
316 |
+
file_count="multiple", variant="primary"
|
317 |
+
)
|
318 |
+
with gr.Row():
|
319 |
+
with gr.Column(scale=1):
|
320 |
+
input_url = gr.Textbox(label="urls", elem_id="textbox_id")
|
321 |
+
|
322 |
+
input_url.submit(self._get_urls_knowledge_base, input_url, [file_output, state])
|
323 |
+
upload_button.upload(self._get_documents_knowledge_base, upload_button, [file_output, state])
|
324 |
+
msg.submit(self._get_response, [msg, chatbot, state,upload_button], [msg, chatbot])
|
325 |
+
|
326 |
+
demo.launch(debug=True,allowed_paths=["/content/"])
|
327 |
+
|
328 |
+
|
329 |
+
if __name__ == "__main__":
|
330 |
+
chatdocumentqa = ChatDocumentQA()
|
331 |
+
chatdocumentqa.gradio_interface()
|