Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from textblob import TextBlob
|
|
6 |
import pandas as pd
|
7 |
import requests
|
8 |
from sklearn.linear_model import LinearRegression
|
|
|
9 |
|
10 |
# Helper Functions
|
11 |
def search_web(query):
|
@@ -27,34 +28,51 @@ def analyze_image(uploaded_file):
|
|
27 |
|
28 |
def analyze_crypto_data(df):
|
29 |
st.subheader("Análisis Técnico")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def analyze_sentiment(text):
|
|
|
38 |
analysis = TextBlob(text)
|
39 |
sentiment = analysis.sentiment.polarity
|
40 |
if sentiment > 0:
|
41 |
-
|
42 |
elif sentiment < 0:
|
43 |
-
|
44 |
else:
|
45 |
-
|
46 |
|
47 |
def predict_prices(df):
|
48 |
st.subheader("Predicción de Precios")
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def fetch_crypto_data():
|
|
|
58 |
url = "https://api.coingecko.com/api/v3/coins/bitcoin/market_chart?vs_currency=usd&days=30&interval=daily"
|
59 |
response = requests.get(url)
|
60 |
if response.status_code == 200:
|
@@ -67,39 +85,50 @@ def fetch_crypto_data():
|
|
67 |
return None
|
68 |
|
69 |
def chat_interface():
|
70 |
-
st.
|
71 |
-
|
|
|
72 |
if user_input:
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
# Main Application
|
78 |
def main():
|
79 |
-
st.title("
|
80 |
-
menu = [
|
|
|
|
|
|
|
81 |
choice = st.sidebar.selectbox("Seleccione una opción", menu)
|
82 |
|
83 |
if choice == "Chat":
|
84 |
chat_interface()
|
85 |
elif choice == "Búsqueda Web":
|
|
|
86 |
query = st.text_input("Ingrese su búsqueda:")
|
87 |
if query:
|
88 |
search_web(query)
|
89 |
elif choice == "Análisis de Imágenes":
|
|
|
90 |
uploaded_file = st.file_uploader("Suba una imagen", type=["png", "jpg", "jpeg"])
|
91 |
if uploaded_file:
|
92 |
analyze_image(uploaded_file)
|
93 |
elif choice == "Análisis Técnico":
|
|
|
94 |
df = fetch_crypto_data()
|
95 |
if df is not None:
|
96 |
analyze_crypto_data(df)
|
97 |
elif choice == "Análisis de Sentimiento":
|
|
|
98 |
text = st.text_area("Ingrese el texto para analizar:")
|
99 |
if text:
|
100 |
-
|
101 |
-
st.write(f"El sentimiento del texto es: {sentiment}")
|
102 |
elif choice == "Predicción de Precios":
|
|
|
103 |
df = fetch_crypto_data()
|
104 |
if df is not None:
|
105 |
predict_prices(df)
|
|
|
6 |
import pandas as pd
|
7 |
import requests
|
8 |
from sklearn.linear_model import LinearRegression
|
9 |
+
from sklearn.preprocessing import PolynomialFeatures
|
10 |
|
11 |
# Helper Functions
|
12 |
def search_web(query):
|
|
|
28 |
|
29 |
def analyze_crypto_data(df):
|
30 |
st.subheader("Análisis Técnico")
|
31 |
+
try:
|
32 |
+
df['RSI'] = ta.rsi(df['close'], length=14)
|
33 |
+
macd = ta.macd(df['close'])
|
34 |
+
if macd is not None:
|
35 |
+
df['MACD'], df['MACD_signal'], df['MACD_hist'] = (
|
36 |
+
macd['MACD_12_26_9'], macd['MACDs_12_26_9'], macd['MACDh_12_26_9']
|
37 |
+
)
|
38 |
+
bbands = ta.bbands(df['close'])
|
39 |
+
if bbands is not None:
|
40 |
+
df['BB_Lower'], df['BB_Mid'], df['BB_Upper'] = (
|
41 |
+
bbands['BBL_20_2.0'], bbands['BBM_20_2.0'], bbands['BBU_20_2.0']
|
42 |
+
)
|
43 |
+
st.write(df.tail(10))
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Error en el análisis técnico: {e}")
|
46 |
|
47 |
def analyze_sentiment(text):
|
48 |
+
st.subheader("Análisis de Sentimiento")
|
49 |
analysis = TextBlob(text)
|
50 |
sentiment = analysis.sentiment.polarity
|
51 |
if sentiment > 0:
|
52 |
+
st.write("El sentimiento del texto es: **Positivo**")
|
53 |
elif sentiment < 0:
|
54 |
+
st.write("El sentimiento del texto es: **Negativo**")
|
55 |
else:
|
56 |
+
st.write("El sentimiento del texto es: **Neutral**")
|
57 |
|
58 |
def predict_prices(df):
|
59 |
st.subheader("Predicción de Precios")
|
60 |
+
try:
|
61 |
+
X = df.index.values.reshape(-1, 1)
|
62 |
+
y = df['close']
|
63 |
+
poly = PolynomialFeatures(degree=2)
|
64 |
+
X_poly = poly.fit_transform(X)
|
65 |
+
model = LinearRegression()
|
66 |
+
model.fit(X_poly, y)
|
67 |
+
future = pd.DataFrame(range(len(df), len(df) + 5), columns=['Index'])
|
68 |
+
future_poly = poly.transform(future)
|
69 |
+
predictions = model.predict(future_poly)
|
70 |
+
st.write("Predicciones de precios futuros:", predictions)
|
71 |
+
except Exception as e:
|
72 |
+
st.error(f"Error en la predicción de precios: {e}")
|
73 |
|
74 |
def fetch_crypto_data():
|
75 |
+
st.subheader("Obtención de Datos de Criptomonedas")
|
76 |
url = "https://api.coingecko.com/api/v3/coins/bitcoin/market_chart?vs_currency=usd&days=30&interval=daily"
|
77 |
response = requests.get(url)
|
78 |
if response.status_code == 200:
|
|
|
85 |
return None
|
86 |
|
87 |
def chat_interface():
|
88 |
+
st.title("Chat Cripto Analizador")
|
89 |
+
st.write("¡Pregúntame algo!")
|
90 |
+
user_input = st.text_input("Tu mensaje:", placeholder="Escribe aquí...")
|
91 |
if user_input:
|
92 |
+
if "crypto" in user_input.lower():
|
93 |
+
st.write(f"Tú: {user_input}")
|
94 |
+
st.write("Bot: Estoy listo para analizar criptomonedas. Intenta seleccionar 'Análisis Técnico' desde la barra lateral.")
|
95 |
+
else:
|
96 |
+
st.write(f"Tú: {user_input}")
|
97 |
+
st.write("Bot: Aún estoy aprendiendo. Por ahora puedo analizar imágenes y criptomonedas.")
|
98 |
|
99 |
# Main Application
|
100 |
def main():
|
101 |
+
st.sidebar.title("Menú")
|
102 |
+
menu = [
|
103 |
+
"Chat", "Búsqueda Web", "Análisis de Imágenes",
|
104 |
+
"Análisis Técnico", "Análisis de Sentimiento", "Predicción de Precios"
|
105 |
+
]
|
106 |
choice = st.sidebar.selectbox("Seleccione una opción", menu)
|
107 |
|
108 |
if choice == "Chat":
|
109 |
chat_interface()
|
110 |
elif choice == "Búsqueda Web":
|
111 |
+
st.header("Búsqueda Web")
|
112 |
query = st.text_input("Ingrese su búsqueda:")
|
113 |
if query:
|
114 |
search_web(query)
|
115 |
elif choice == "Análisis de Imágenes":
|
116 |
+
st.header("Análisis de Imágenes")
|
117 |
uploaded_file = st.file_uploader("Suba una imagen", type=["png", "jpg", "jpeg"])
|
118 |
if uploaded_file:
|
119 |
analyze_image(uploaded_file)
|
120 |
elif choice == "Análisis Técnico":
|
121 |
+
st.header("Análisis Técnico de Criptomonedas")
|
122 |
df = fetch_crypto_data()
|
123 |
if df is not None:
|
124 |
analyze_crypto_data(df)
|
125 |
elif choice == "Análisis de Sentimiento":
|
126 |
+
st.header("Análisis de Sentimiento")
|
127 |
text = st.text_area("Ingrese el texto para analizar:")
|
128 |
if text:
|
129 |
+
analyze_sentiment(text)
|
|
|
130 |
elif choice == "Predicción de Precios":
|
131 |
+
st.header("Predicción de Precios de Criptomonedas")
|
132 |
df = fetch_crypto_data()
|
133 |
if df is not None:
|
134 |
predict_prices(df)
|