Update app.py
Browse filesimport streamlit as st
import requests
from transformers import pipeline
from PIL import Image
import io
import pandas as pd
import plotly.express as px
# Configuración inicial
st.set_page_config(page_title="CriptoAnalizador IA", layout="wide")
# Título de la aplicación
st.title("🚀 CriptoAnalizador IA")
# Clave de API para Coinalyze
COINALYZE_API_KEY = "8429ca91-8726-45b4-a067-05cc778ea867"
COINALYZE_URL = "https://api.coinalyze.net/v1"
# Opciones de navegación
menu = st.sidebar.radio("Navegación", ["Chat", "Análisis de imágenes", "Criptomonedas"])
if menu == "Chat":
st.header("🤖 Chat Avanzado con IA")
user_input = st.text_input("Escribe tu mensaje:")
if user_input:
# Respuesta usando un modelo de lenguaje
model = pipeline("text-generation", model="gpt2")
response = model(user_input, max_length=100, num_return_sequences=1)
st.success(response[0]["generated_text"])
elif menu == "Análisis de imágenes":
st.header("📷 Análisis de Imágenes")
uploaded_file = st.file_uploader("Sube una imagen para analizar:")
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Imagen cargada", use_column_width=True)
# Extracción de texto
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
image_tensor = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(image_tensor)
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
st.subheader("Texto extraído:")
st.write(extracted_text)
elif menu == "Criptomonedas":
st.header("📊 Análisis Técnico de Criptomonedas")
# Selección de criptomoneda
crypto = st.text_input("Ingresa el símbolo de la criptomoneda (Ejemplo: BTC, ETH):")
if crypto:
st.subheader(f"Análisis Técnico para {crypto.upper()}")
# Llamada a la API de Coinalyze
endpoint = f"{COINALYZE_URL}/cryptocurrencies/{crypto}/historical"
headers = {"Authorization": f"Bearer {COINALYZE_API_KEY}"}
response = requests.get(endpoint, headers=headers)
if response.status_code == 200:
data = response.json()
df = pd.DataFrame(data["prices"], columns=["timestamp", "price"])
# Convertir timestamp a fecha
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
# Graficar precios
fig = px.line(df, x="timestamp", y="price", title=f"Precio de {crypto.upper()} a lo largo del tiempo")
st.plotly_chart(fig)
else:
st.error("No se pudieron obtener los datos. Verifica el símbolo o intenta más tarde.")
# Footer
st.sidebar.markdown("---")
st.sidebar.markdown("Creado con ❤️ por tu ChatBot")
|
@@ -1,63 +1,81 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import pipeline
|
| 3 |
import requests
|
| 4 |
-
from
|
| 5 |
from PIL import Image
|
| 6 |
-
import
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
st.
|
| 37 |
-
|
| 38 |
-
# Input del usuario
|
| 39 |
-
user_input = st.text_input("Hazme una pregunta:")
|
| 40 |
-
|
| 41 |
-
# Subir una imagen (si se desea analizar)
|
| 42 |
-
uploaded_image = st.file_uploader("Sube una imagen para análisis", type=["jpg", "png"])
|
| 43 |
-
|
| 44 |
-
# Procesar la respuesta
|
| 45 |
-
if user_input:
|
| 46 |
-
if "buscar" in user_input.lower(): # Si el usuario pide realizar una búsqueda
|
| 47 |
-
with st.spinner("Buscando en Internet... 🕵️♂️"):
|
| 48 |
-
search_results = search_internet(user_input)
|
| 49 |
-
st.success("¡Resultados listos! 😊")
|
| 50 |
-
st.write(search_results)
|
| 51 |
-
else: # Si es una pregunta que el modelo debe responder
|
| 52 |
-
with st.spinner("Pensando... 🤔"):
|
| 53 |
-
response = generator(user_input, max_length=100, num_return_sequences=1)
|
| 54 |
-
answer = response[0]['generated_text']
|
| 55 |
-
st.success("¡Respuesta lista! 😊")
|
| 56 |
-
st.write(answer)
|
| 57 |
-
|
| 58 |
-
# Si el usuario sube una imagen
|
| 59 |
-
if uploaded_image:
|
| 60 |
-
analysis_result = analyze_image(uploaded_image)
|
| 61 |
-
st.success("¡Imagen analizada! 😊")
|
| 62 |
-
st.write(analysis_result)
|
| 63 |
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import requests
|
| 3 |
+
from transformers import pipeline
|
| 4 |
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
|
| 9 |
+
# Configuración inicial
|
| 10 |
+
st.set_page_config(page_title="CriptoAnalizador IA", layout="wide")
|
| 11 |
+
|
| 12 |
+
# Título de la aplicación
|
| 13 |
+
st.title("🚀 CriptoAnalizador IA")
|
| 14 |
|
| 15 |
+
# Clave de API para Coinalyze
|
| 16 |
+
COINALYZE_API_KEY = "8429ca91-8726-45b4-a067-05cc778ea867"
|
| 17 |
+
COINALYZE_URL = "https://api.coinalyze.net/v1"
|
| 18 |
|
| 19 |
+
# Opciones de navegación
|
| 20 |
+
menu = st.sidebar.radio("Navegación", ["Chat", "Análisis de imágenes", "Criptomonedas"])
|
| 21 |
|
| 22 |
+
if menu == "Chat":
|
| 23 |
+
st.header("🤖 Chat Avanzado con IA")
|
| 24 |
+
user_input = st.text_input("Escribe tu mensaje:")
|
| 25 |
+
if user_input:
|
| 26 |
+
# Respuesta usando un modelo de lenguaje
|
| 27 |
+
model = pipeline("text-generation", model="gpt2")
|
| 28 |
+
response = model(user_input, max_length=100, num_return_sequences=1)
|
| 29 |
+
st.success(response[0]["generated_text"])
|
| 30 |
+
|
| 31 |
+
elif menu == "Análisis de imágenes":
|
| 32 |
+
st.header("📷 Análisis de Imágenes")
|
| 33 |
+
uploaded_file = st.file_uploader("Sube una imagen para analizar:")
|
| 34 |
+
if uploaded_file:
|
| 35 |
+
image = Image.open(uploaded_file)
|
| 36 |
+
st.image(image, caption="Imagen cargada", use_column_width=True)
|
| 37 |
+
|
| 38 |
+
# Extracción de texto
|
| 39 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 40 |
+
|
| 41 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
| 42 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
| 43 |
+
|
| 44 |
+
image_tensor = processor(images=image, return_tensors="pt").pixel_values
|
| 45 |
+
generated_ids = model.generate(image_tensor)
|
| 46 |
+
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 47 |
+
|
| 48 |
+
st.subheader("Texto extraído:")
|
| 49 |
+
st.write(extracted_text)
|
| 50 |
+
|
| 51 |
+
elif menu == "Criptomonedas":
|
| 52 |
+
st.header("📊 Análisis Técnico de Criptomonedas")
|
| 53 |
|
| 54 |
+
# Selección de criptomoneda
|
| 55 |
+
crypto = st.text_input("Ingresa el símbolo de la criptomoneda (Ejemplo: BTC, ETH):")
|
| 56 |
+
|
| 57 |
+
if crypto:
|
| 58 |
+
st.subheader(f"Análisis Técnico para {crypto.upper()}")
|
| 59 |
+
|
| 60 |
+
# Llamada a la API de Coinalyze
|
| 61 |
+
endpoint = f"{COINALYZE_URL}/cryptocurrencies/{crypto}/historical"
|
| 62 |
+
headers = {"Authorization": f"Bearer {COINALYZE_API_KEY}"}
|
| 63 |
+
|
| 64 |
+
response = requests.get(endpoint, headers=headers)
|
| 65 |
+
if response.status_code == 200:
|
| 66 |
+
data = response.json()
|
| 67 |
+
df = pd.DataFrame(data["prices"], columns=["timestamp", "price"])
|
| 68 |
+
|
| 69 |
+
# Convertir timestamp a fecha
|
| 70 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
|
| 71 |
+
|
| 72 |
+
# Graficar precios
|
| 73 |
+
fig = px.line(df, x="timestamp", y="price", title=f"Precio de {crypto.upper()} a lo largo del tiempo")
|
| 74 |
+
st.plotly_chart(fig)
|
| 75 |
+
else:
|
| 76 |
+
st.error("No se pudieron obtener los datos. Verifica el símbolo o intenta más tarde.")
|
| 77 |
|
| 78 |
+
# Footer
|
| 79 |
+
st.sidebar.markdown("---")
|
| 80 |
+
st.sidebar.markdown("Creado con ❤️ por tu ChatBot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|