Update app.py
Browse filesimport streamlit as st
import requests
from transformers import pipeline
from PIL import Image
import io
import pandas as pd
import plotly.express as px
# Configuración inicial
st.set_page_config(page_title="CriptoAnalizador IA", layout="wide")
# Título de la aplicación
st.title("🚀 CriptoAnalizador IA")
# Clave de API para Coinalyze
COINALYZE_API_KEY = "8429ca91-8726-45b4-a067-05cc778ea867"
COINALYZE_URL = "https://api.coinalyze.net/v1"
# Opciones de navegación
menu = st.sidebar.radio("Navegación", ["Chat", "Análisis de imágenes", "Criptomonedas"])
if menu == "Chat":
st.header("🤖 Chat Avanzado con IA")
user_input = st.text_input("Escribe tu mensaje:")
if user_input:
# Respuesta usando un modelo de lenguaje
model = pipeline("text-generation", model="gpt2")
response = model(user_input, max_length=100, num_return_sequences=1)
st.success(response[0]["generated_text"])
elif menu == "Análisis de imágenes":
st.header("📷 Análisis de Imágenes")
uploaded_file = st.file_uploader("Sube una imagen para analizar:")
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Imagen cargada", use_column_width=True)
# Extracción de texto
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
image_tensor = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(image_tensor)
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
st.subheader("Texto extraído:")
st.write(extracted_text)
elif menu == "Criptomonedas":
st.header("📊 Análisis Técnico de Criptomonedas")
# Selección de criptomoneda
crypto = st.text_input("Ingresa el símbolo de la criptomoneda (Ejemplo: BTC, ETH):")
if crypto:
st.subheader(f"Análisis Técnico para {crypto.upper()}")
# Llamada a la API de Coinalyze
endpoint = f"{COINALYZE_URL}/cryptocurrencies/{crypto}/historical"
headers = {"Authorization": f"Bearer {COINALYZE_API_KEY}"}
response = requests.get(endpoint, headers=headers)
if response.status_code == 200:
data = response.json()
df = pd.DataFrame(data["prices"], columns=["timestamp", "price"])
# Convertir timestamp a fecha
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
# Graficar precios
fig = px.line(df, x="timestamp", y="price", title=f"Precio de {crypto.upper()} a lo largo del tiempo")
st.plotly_chart(fig)
else:
st.error("No se pudieron obtener los datos. Verifica el símbolo o intenta más tarde.")
# Footer
st.sidebar.markdown("---")
st.sidebar.markdown("Creado con ❤️ por tu ChatBot")
@@ -1,63 +1,81 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
import requests
|
4 |
-
from
|
5 |
from PIL import Image
|
6 |
-
import
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
-
st.
|
37 |
-
|
38 |
-
# Input del usuario
|
39 |
-
user_input = st.text_input("Hazme una pregunta:")
|
40 |
-
|
41 |
-
# Subir una imagen (si se desea analizar)
|
42 |
-
uploaded_image = st.file_uploader("Sube una imagen para análisis", type=["jpg", "png"])
|
43 |
-
|
44 |
-
# Procesar la respuesta
|
45 |
-
if user_input:
|
46 |
-
if "buscar" in user_input.lower(): # Si el usuario pide realizar una búsqueda
|
47 |
-
with st.spinner("Buscando en Internet... 🕵️♂️"):
|
48 |
-
search_results = search_internet(user_input)
|
49 |
-
st.success("¡Resultados listos! 😊")
|
50 |
-
st.write(search_results)
|
51 |
-
else: # Si es una pregunta que el modelo debe responder
|
52 |
-
with st.spinner("Pensando... 🤔"):
|
53 |
-
response = generator(user_input, max_length=100, num_return_sequences=1)
|
54 |
-
answer = response[0]['generated_text']
|
55 |
-
st.success("¡Respuesta lista! 😊")
|
56 |
-
st.write(answer)
|
57 |
-
|
58 |
-
# Si el usuario sube una imagen
|
59 |
-
if uploaded_image:
|
60 |
-
analysis_result = analyze_image(uploaded_image)
|
61 |
-
st.success("¡Imagen analizada! 😊")
|
62 |
-
st.write(analysis_result)
|
63 |
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import requests
|
3 |
+
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
+
import io
|
6 |
+
import pandas as pd
|
7 |
+
import plotly.express as px
|
8 |
+
|
9 |
+
# Configuración inicial
|
10 |
+
st.set_page_config(page_title="CriptoAnalizador IA", layout="wide")
|
11 |
+
|
12 |
+
# Título de la aplicación
|
13 |
+
st.title("🚀 CriptoAnalizador IA")
|
14 |
|
15 |
+
# Clave de API para Coinalyze
|
16 |
+
COINALYZE_API_KEY = "8429ca91-8726-45b4-a067-05cc778ea867"
|
17 |
+
COINALYZE_URL = "https://api.coinalyze.net/v1"
|
18 |
|
19 |
+
# Opciones de navegación
|
20 |
+
menu = st.sidebar.radio("Navegación", ["Chat", "Análisis de imágenes", "Criptomonedas"])
|
21 |
|
22 |
+
if menu == "Chat":
|
23 |
+
st.header("🤖 Chat Avanzado con IA")
|
24 |
+
user_input = st.text_input("Escribe tu mensaje:")
|
25 |
+
if user_input:
|
26 |
+
# Respuesta usando un modelo de lenguaje
|
27 |
+
model = pipeline("text-generation", model="gpt2")
|
28 |
+
response = model(user_input, max_length=100, num_return_sequences=1)
|
29 |
+
st.success(response[0]["generated_text"])
|
30 |
+
|
31 |
+
elif menu == "Análisis de imágenes":
|
32 |
+
st.header("📷 Análisis de Imágenes")
|
33 |
+
uploaded_file = st.file_uploader("Sube una imagen para analizar:")
|
34 |
+
if uploaded_file:
|
35 |
+
image = Image.open(uploaded_file)
|
36 |
+
st.image(image, caption="Imagen cargada", use_column_width=True)
|
37 |
+
|
38 |
+
# Extracción de texto
|
39 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
40 |
+
|
41 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
42 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
43 |
+
|
44 |
+
image_tensor = processor(images=image, return_tensors="pt").pixel_values
|
45 |
+
generated_ids = model.generate(image_tensor)
|
46 |
+
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
47 |
+
|
48 |
+
st.subheader("Texto extraído:")
|
49 |
+
st.write(extracted_text)
|
50 |
+
|
51 |
+
elif menu == "Criptomonedas":
|
52 |
+
st.header("📊 Análisis Técnico de Criptomonedas")
|
53 |
|
54 |
+
# Selección de criptomoneda
|
55 |
+
crypto = st.text_input("Ingresa el símbolo de la criptomoneda (Ejemplo: BTC, ETH):")
|
56 |
+
|
57 |
+
if crypto:
|
58 |
+
st.subheader(f"Análisis Técnico para {crypto.upper()}")
|
59 |
+
|
60 |
+
# Llamada a la API de Coinalyze
|
61 |
+
endpoint = f"{COINALYZE_URL}/cryptocurrencies/{crypto}/historical"
|
62 |
+
headers = {"Authorization": f"Bearer {COINALYZE_API_KEY}"}
|
63 |
+
|
64 |
+
response = requests.get(endpoint, headers=headers)
|
65 |
+
if response.status_code == 200:
|
66 |
+
data = response.json()
|
67 |
+
df = pd.DataFrame(data["prices"], columns=["timestamp", "price"])
|
68 |
+
|
69 |
+
# Convertir timestamp a fecha
|
70 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
|
71 |
+
|
72 |
+
# Graficar precios
|
73 |
+
fig = px.line(df, x="timestamp", y="price", title=f"Precio de {crypto.upper()} a lo largo del tiempo")
|
74 |
+
st.plotly_chart(fig)
|
75 |
+
else:
|
76 |
+
st.error("No se pudieron obtener los datos. Verifica el símbolo o intenta más tarde.")
|
77 |
|
78 |
+
# Footer
|
79 |
+
st.sidebar.markdown("---")
|
80 |
+
st.sidebar.markdown("Creado con ❤️ por tu ChatBot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|