|
import streamlit as st |
|
from PIL import Image |
|
import pytesseract |
|
from numpy import nan as NaN |
|
import pandas_ta as ta |
|
from textblob import TextBlob |
|
import pandas as pd |
|
import requests |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.preprocessing import PolynomialFeatures |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
st.sidebar.title("Menú") |
|
menu = [ |
|
"Chat", "Búsqueda Web", "Análisis de Imágenes", |
|
"Análisis Técnico", "Análisis de Sentimiento", "Predicción de Precios" |
|
] |
|
choice = st.sidebar.selectbox("Seleccione una opción", menu) |
|
|
|
if choice == "Chat": |
|
chat_interface() |
|
elif choice == "Búsqueda Web": |
|
st.header("Búsqueda Web") |
|
query = st.text_input("Ingrese su búsqueda:") |
|
if query: |
|
search_web(query) |
|
elif choice == "Análisis de Imágenes": |
|
st.header("Análisis de Imágenes") |
|
uploaded_file = st.file_uploader("Suba una imagen", type=["png", "jpg", "jpeg"]) |
|
if uploaded_file: |
|
analyze_image(uploaded_file) |
|
elif choice == "Análisis Técnico": |
|
st.header("Análisis Técnico de Criptomonedas") |
|
df = fetch_crypto_data() |
|
if df is not None: |
|
analyze_crypto_data(df) |
|
elif choice == "Análisis de Sentimiento": |
|
st.header("Análisis de Sentimiento") |
|
text = st.text_area("Ingrese el texto para analizar:") |
|
if text: |
|
analyze_sentiment(text) |
|
elif choice == "Predicción de Precios": |
|
st.header("Predicción de Precios de Criptomonedas") |
|
df = fetch_crypto_data() |
|
if df is not None: |
|
predict_prices(df) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|