Spaces:
Runtime error
Runtime error
import json | |
import os | |
import re | |
import torch | |
import torch.distributed as dist | |
from mmengine.runner import set_random_seed | |
from videogen_hub.pipelines.opensora.opensora.acceleration.parallel_states import set_sequence_parallel_group | |
from videogen_hub.pipelines.opensora.opensora.datasets import IMG_FPS, save_sample | |
from videogen_hub.pipelines.opensora.opensora.datasets.utils import read_from_path | |
from videogen_hub.pipelines.opensora.opensora.models.text_encoder.t5 import text_preprocessing | |
from videogen_hub.pipelines.opensora.opensora.registry import MODELS, SCHEDULERS, build_module | |
from videogen_hub.pipelines.opensora.opensora.utils.config_utils import parse_configs | |
from videogen_hub.pipelines.opensora.opensora.utils.misc import to_torch_dtype | |
def collect_references_batch(reference_paths, vae, image_size): | |
refs_x = [] | |
for reference_path in reference_paths: | |
if reference_path is None: | |
refs_x.append([]) | |
continue | |
ref_path = reference_path.split(";") | |
ref = [] | |
for r_path in ref_path: | |
r = read_from_path(r_path, image_size, transform_name="resize_crop") | |
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype)) | |
r_x = r_x.squeeze(0) | |
ref.append(r_x) | |
refs_x.append(ref) | |
# refs_x: [batch, ref_num, C, T, H, W] | |
return refs_x | |
def process_mask_strategy(mask_strategy): | |
mask_batch = [] | |
mask_strategy = mask_strategy.split(";") | |
for mask in mask_strategy: | |
mask_group = mask.split(",") | |
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}" | |
if len(mask_group) == 1: | |
mask_group.extend(["0", "0", "0", "1", "0"]) | |
elif len(mask_group) == 2: | |
mask_group.extend(["0", "0", "1", "0"]) | |
elif len(mask_group) == 3: | |
mask_group.extend(["0", "1", "0"]) | |
elif len(mask_group) == 4: | |
mask_group.extend(["1", "0"]) | |
elif len(mask_group) == 5: | |
mask_group.append("0") | |
mask_batch.append(mask_group) | |
return mask_batch | |
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i): | |
masks = [] | |
for i, mask_strategy in enumerate(mask_strategys): | |
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device) | |
if mask_strategy is None: | |
masks.append(mask) | |
continue | |
mask_strategy = process_mask_strategy(mask_strategy) | |
for mst in mask_strategy: | |
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst | |
loop_id = int(loop_id) | |
if loop_id != loop_i: | |
continue | |
m_id = int(m_id) | |
m_ref_start = int(m_ref_start) | |
m_length = int(m_length) | |
m_target_start = int(m_target_start) | |
edit_ratio = float(edit_ratio) | |
ref = refs_x[i][m_id] # [C, T, H, W] | |
if m_ref_start < 0: | |
m_ref_start = ref.shape[1] + m_ref_start | |
if m_target_start < 0: | |
# z: [B, C, T, H, W] | |
m_target_start = z.shape[2] + m_target_start | |
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length] | |
mask[m_target_start : m_target_start + m_length] = edit_ratio | |
masks.append(mask) | |
masks = torch.stack(masks) | |
return masks | |
def process_prompts(prompts, num_loop): | |
ret_prompts = [] | |
for prompt in prompts: | |
if prompt.startswith("|0|"): | |
prompt_list = prompt.split("|")[1:] | |
text_list = [] | |
for i in range(0, len(prompt_list), 2): | |
start_loop = int(prompt_list[i]) | |
text = prompt_list[i + 1] | |
text = text_preprocessing(text) | |
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop | |
text_list.extend([text] * (end_loop - start_loop)) | |
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}" | |
ret_prompts.append(text_list) | |
else: | |
prompt = text_preprocessing(prompt) | |
ret_prompts.append([prompt] * num_loop) | |
return ret_prompts | |
def extract_json_from_prompts(prompts): | |
additional_infos = [] | |
ret_prompts = [] | |
for prompt in prompts: | |
parts = re.split(r"(?=[{\[])", prompt) | |
assert len(parts) <= 2, f"Invalid prompt: {prompt}" | |
ret_prompts.append(parts[0]) | |
if len(parts) == 1: | |
additional_infos.append({}) | |
else: | |
additional_infos.append(json.loads(parts[1])) | |
return ret_prompts, additional_infos | |
def main(): | |
# ====================================================== | |
# 1. cfg and init distributed env | |
# ====================================================== | |
cfg = parse_configs(training=False) | |
print(cfg) | |
has_colossal = False | |
try: | |
import colossalai | |
from colossalai.cluster import DistCoordinator | |
except: | |
colossalai = None | |
has_colossal = False | |
# init distributed | |
if os.environ.get("WORLD_SIZE", None) and has_colossal: | |
use_dist = True | |
colossalai.launch_from_torch({}) | |
coordinator = DistCoordinator() | |
if coordinator.world_size > 1: | |
set_sequence_parallel_group(dist.group.WORLD) | |
enable_sequence_parallelism = True | |
else: | |
enable_sequence_parallelism = False | |
else: | |
use_dist = False | |
enable_sequence_parallelism = False | |
# ====================================================== | |
# 2. runtime variables | |
# ====================================================== | |
torch.set_grad_enabled(False) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = to_torch_dtype(cfg.dtype) | |
set_random_seed(seed=cfg.seed) | |
prompts = cfg.prompt | |
# ====================================================== | |
# 3. build model & load weights | |
# ====================================================== | |
# 3.1. build model | |
input_size = (cfg.num_frames, *cfg.image_size) | |
vae = build_module(cfg.vae, MODELS) | |
latent_size = vae.get_latent_size(input_size) | |
text_encoder = build_module(cfg.text_encoder, MODELS, device=device) # T5 must be fp32 | |
model = build_module( | |
cfg.model, | |
MODELS, | |
input_size=latent_size, | |
in_channels=vae.out_channels, | |
caption_channels=text_encoder.output_dim, | |
model_max_length=text_encoder.model_max_length, | |
dtype=dtype, | |
enable_sequence_parallelism=enable_sequence_parallelism, | |
) | |
text_encoder.y_embedder = model.y_embedder # hack for classifier-free guidance | |
# 3.2. move to device & eval | |
vae = vae.to(device, dtype).eval() | |
model = model.to(device, dtype).eval() | |
# 3.3. build scheduler | |
scheduler = build_module(cfg.scheduler, SCHEDULERS) | |
# 3.4. support for multi-resolution | |
model_args = dict() | |
if cfg.multi_resolution == "PixArtMS": | |
image_size = cfg.image_size | |
hw = torch.tensor([image_size], device=device, dtype=dtype).repeat(cfg.batch_size, 1) | |
ar = torch.tensor([[image_size[0] / image_size[1]]], device=device, dtype=dtype).repeat(cfg.batch_size, 1) | |
model_args["data_info"] = dict(ar=ar, hw=hw) | |
elif cfg.multi_resolution == "STDiT2": | |
image_size = cfg.image_size | |
height = torch.tensor([image_size[0]], device=device, dtype=dtype).repeat(cfg.batch_size) | |
width = torch.tensor([image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size) | |
num_frames = torch.tensor([cfg.num_frames], device=device, dtype=dtype).repeat(cfg.batch_size) | |
ar = torch.tensor([image_size[0] / image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size) | |
if cfg.num_frames == 1: | |
cfg.fps = IMG_FPS | |
fps = torch.tensor([cfg.fps], device=device, dtype=dtype).repeat(cfg.batch_size) | |
model_args["height"] = height | |
model_args["width"] = width | |
model_args["num_frames"] = num_frames | |
model_args["ar"] = ar | |
model_args["fps"] = fps | |
# 3.5 reference | |
if cfg.reference_path is not None: | |
assert len(cfg.reference_path) == len( | |
prompts | |
), f"Reference path mismatch: {len(cfg.reference_path)} != {len(prompts)}" | |
assert len(cfg.reference_path) == len( | |
cfg.mask_strategy | |
), f"Mask strategy mismatch: {len(cfg.mask_strategy)} != {len(prompts)}" | |
else: | |
cfg.reference_path = [None] * len(prompts) | |
cfg.mask_strategy = [None] * len(prompts) | |
# ====================================================== | |
# 4. inference | |
# ====================================================== | |
sample_idx = 0 | |
if cfg.sample_name is not None: | |
sample_name = cfg.sample_name | |
elif cfg.prompt_as_path: | |
sample_name = "" | |
else: | |
sample_name = "sample" | |
save_dir = cfg.save_dir | |
os.makedirs(save_dir, exist_ok=True) | |
# 4.1. batch generation | |
for i in range(0, len(prompts), cfg.batch_size): | |
batch_prompts_raw = prompts[i : i + cfg.batch_size] | |
batch_prompts_raw, additional_infos = extract_json_from_prompts(batch_prompts_raw) | |
batch_prompts_loops = process_prompts(batch_prompts_raw, cfg.loop) | |
# handle the last batch | |
if len(batch_prompts_raw) < cfg.batch_size and cfg.multi_resolution == "STDiT2": | |
model_args["height"] = model_args["height"][: len(batch_prompts_raw)] | |
model_args["width"] = model_args["width"][: len(batch_prompts_raw)] | |
model_args["num_frames"] = model_args["num_frames"][: len(batch_prompts_raw)] | |
model_args["ar"] = model_args["ar"][: len(batch_prompts_raw)] | |
model_args["fps"] = model_args["fps"][: len(batch_prompts_raw)] | |
# 4.2. load reference videos & images | |
for j, info in enumerate(additional_infos): | |
if "reference_path" in info: | |
cfg.reference_path[i + j] = info["reference_path"] | |
if "mask_strategy" in info: | |
cfg.mask_strategy[i + j] = info["mask_strategy"] | |
refs_x = collect_references_batch(cfg.reference_path[i : i + cfg.batch_size], vae, cfg.image_size) | |
mask_strategy = cfg.mask_strategy[i : i + cfg.batch_size] | |
# 4.3. diffusion sampling | |
old_sample_idx = sample_idx | |
# generate multiple samples for each prompt | |
for k in range(cfg.num_sample): | |
sample_idx = old_sample_idx | |
video_clips = [] | |
# 4.4. long video generation | |
for loop_i in range(cfg.loop): | |
# 4.4 sample in hidden space | |
batch_prompts = [prompt[loop_i] for prompt in batch_prompts_loops] | |
# 4.5. apply mask strategy | |
masks = None | |
# if cfg.reference_path is not None: | |
if loop_i > 0: | |
ref_x = vae.encode(video_clips[-1]) | |
for j, refs in enumerate(refs_x): | |
if refs is None: | |
refs_x[j] = [ref_x[j]] | |
else: | |
refs.append(ref_x[j]) | |
if mask_strategy[j] is None: | |
mask_strategy[j] = "" | |
else: | |
mask_strategy[j] += ";" | |
mask_strategy[ | |
j | |
] += f"{loop_i},{len(refs)-1},-{cfg.condition_frame_length},0,{cfg.condition_frame_length}" | |
# sampling | |
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype) | |
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i) | |
samples = scheduler.sample( | |
model, | |
text_encoder, | |
z=z, | |
prompts=batch_prompts, | |
device=device, | |
additional_args=model_args, | |
mask=masks, # scheduler must support mask | |
) | |
samples = vae.decode(samples.to(dtype)) | |
video_clips.append(samples) | |
# 4.7. save video | |
if loop_i == cfg.loop - 1: | |
if not use_dist or coordinator.is_master(): | |
for idx in range(len(video_clips[0])): | |
video_clips_i = [video_clips[0][idx]] + [ | |
video_clips[i][idx][:, cfg.condition_frame_length :] for i in range(1, cfg.loop) | |
] | |
video = torch.cat(video_clips_i, dim=1) | |
print(f"Prompt: {batch_prompts_raw[idx]}") | |
if cfg.prompt_as_path: | |
sample_name_suffix = batch_prompts_raw[idx] | |
else: | |
sample_name_suffix = f"_{sample_idx}" | |
save_path = os.path.join(save_dir, f"{sample_name}{sample_name_suffix}") | |
if cfg.num_sample != 1: | |
save_path = f"{save_path}-{k}" | |
save_sample(video, fps=cfg.fps // cfg.frame_interval, save_path=save_path) | |
sample_idx += 1 | |
if __name__ == "__main__": | |
main() | |