File size: 5,892 Bytes
5d32408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# General
import sys
from pathlib import Path
import torch
from pytorch_lightning import LightningDataModule

# For Stage-1
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers import StableVideoDiffusionPipeline, AutoPipelineForText2Image

# For Stage-2
import tempfile
import yaml
from videogen_hub.pipelines.streamingt2v.model.video_ldm import VideoLDM
from videogen_hub.pipelines.streamingt2v.model.callbacks import SaveConfigCallback
from videogen_hub.pipelines.streamingt2v.inference_utils import (
    legacy_transformation,
    remove_value,
    CustomCLI,
    v2v_to_device,
)

# For Stage-3
import sys

sys.path.append(Path(__file__).parent / "thirdparty")


# Initialize Stage-1 model1.
def init_modelscope(device="cuda"):
    pipe = DiffusionPipeline.from_pretrained(
        "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
    )
    # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    # pipe.set_progress_bar_config(disable=True)
    pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_model_cpu_offload()
    pipe.enable_vae_slicing()
    pipe.set_progress_bar_config(disable=True)
    return pipe.to(device)


def init_zeroscope(device="cuda"):
    pipe = DiffusionPipeline.from_pretrained(
        "cerspense/zeroscope_v2_576w", torch_dtype=torch.float16
    )
    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    pipe.enable_model_cpu_offload()
    return pipe.to(device)


def init_animatediff(device="cuda"):
    adapter = MotionAdapter.from_pretrained(
        "guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16
    )
    model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
    pipe = AnimateDiffPipeline.from_pretrained(
        model_id, motion_adapter=adapter, torch_dtype=torch.float16
    )
    scheduler = DDIMScheduler.from_pretrained(
        model_id,
        subfolder="scheduler",
        clip_sample=False,
        timestep_spacing="linspace",
        beta_schedule="linear",
        steps_offset=1,
    )
    pipe.scheduler = scheduler
    pipe.enable_vae_slicing()
    pipe.enable_model_cpu_offload()
    return pipe.to(device)


def init_sdxl(device="cuda"):
    pipe = AutoPipelineForText2Image.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        torch_dtype=torch.float16,
        variant="fp16",
        use_safetensors=True,
    )
    # pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    return pipe.to(device)


def init_svd(device="cuda"):
    pipe = StableVideoDiffusionPipeline.from_pretrained(
        "stabilityai/stable-video-diffusion-img2vid-xt",
        torch_dtype=torch.float16,
        variant="fp16",
    )
    pipe.enable_model_cpu_offload()
    return pipe.to(device)


# Initialize StreamingT2V model.
def init_streamingt2v_model(ckpt_file, result_fol, device):
    accelerator = "gpu" if device.startswith("cuda") else "cpu"
    import os

    base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    # print("base dir", base_dir)
    config_file = f"{base_dir}/streamingt2v/configs/text_to_video/config.yaml"
    print("config dir", config_file)
    sys.argv = sys.argv[:1]
    with tempfile.TemporaryDirectory() as tmpdirname:
        storage_fol = Path(tmpdirname)
        with open(config_file, "r") as yaml_handle:
            yaml_obj = yaml.safe_load(yaml_handle)

        yaml_obj_orig_data_cfg = legacy_transformation(yaml_obj)
        yaml_obj_orig_data_cfg = remove_value(yaml_obj_orig_data_cfg, "video_dataset")

        with open(storage_fol / "config.yaml", "w") as outfile:
            yaml.dump(yaml_obj_orig_data_cfg, outfile, default_flow_style=False)
        sys.argv.append("--config")
        sys.argv.append((storage_fol / "config.yaml").as_posix())
        sys.argv.append("--ckpt")
        sys.argv.append(ckpt_file.as_posix())
        sys.argv.append("--result_fol")
        sys.argv.append(result_fol.as_posix())
        sys.argv.append("--config")
        sys.argv.append("configs/inference/inference_long_video.yaml")
        sys.argv.append("--data.prompt_cfg.type=prompt")
        sys.argv.append(f"--data.prompt_cfg.content='test prompt for initialization'")
        sys.argv.append(f"--trainer.accelerator={accelerator}")
        sys.argv.append("--trainer.devices=1")
        sys.argv.append("--trainer.num_nodes=1")
        sys.argv.append(f"--model.inference_params.num_inference_steps=50")
        sys.argv.append(f"--model.inference_params.n_autoregressive_generations=4")
        sys.argv.append("--model.inference_params.concat_video=True")
        sys.argv.append("--model.inference_params.result_formats=[eval_mp4]")

        cli = CustomCLI(
            VideoLDM,
            LightningDataModule,
            run=False,
            subclass_mode_data=True,
            auto_configure_optimizers=False,
            parser_kwargs={"parser_mode": "omegaconf"},
            save_config_callback=SaveConfigCallback,
            save_config_kwargs={"log_dir": result_fol, "overwrite": True},
        )

        model = cli.model
        model.load_state_dict(
            torch.load(cli.config["ckpt"].as_posix(), map_location=torch.device("cpu"))[
                "state_dict"
            ]
        )
    return cli, model


# Initialize Stage-3 model.
def init_v2v_model(cfg, device):
    from modelscope.pipelines import pipeline

    model_id = cfg["model_id"]
    pipe_enhance = pipeline(
        task="video-to-video", model=model_id, model_revision="v1.1.0", device="cpu"
    )
    pipe_enhance.model.cfg.max_frames = 10000
    pipe_enhance = v2v_to_device(pipe_enhance, device)
    return pipe_enhance