Spaces:
Runtime error
Runtime error
File size: 13,542 Bytes
5d32408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import json
import os
import re
import torch
import torch.distributed as dist
from mmengine.runner import set_random_seed
from videogen_hub.pipelines.opensora.opensora.acceleration.parallel_states import set_sequence_parallel_group
from videogen_hub.pipelines.opensora.opensora.datasets import IMG_FPS, save_sample
from videogen_hub.pipelines.opensora.opensora.datasets.utils import read_from_path
from videogen_hub.pipelines.opensora.opensora.models.text_encoder.t5 import text_preprocessing
from videogen_hub.pipelines.opensora.opensora.registry import MODELS, SCHEDULERS, build_module
from videogen_hub.pipelines.opensora.opensora.utils.config_utils import parse_configs
from videogen_hub.pipelines.opensora.opensora.utils.misc import to_torch_dtype
def collect_references_batch(reference_paths, vae, image_size):
refs_x = []
for reference_path in reference_paths:
if reference_path is None:
refs_x.append([])
continue
ref_path = reference_path.split(";")
ref = []
for r_path in ref_path:
r = read_from_path(r_path, image_size, transform_name="resize_crop")
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
r_x = r_x.squeeze(0)
ref.append(r_x)
refs_x.append(ref)
# refs_x: [batch, ref_num, C, T, H, W]
return refs_x
def process_mask_strategy(mask_strategy):
mask_batch = []
mask_strategy = mask_strategy.split(";")
for mask in mask_strategy:
mask_group = mask.split(",")
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
if len(mask_group) == 1:
mask_group.extend(["0", "0", "0", "1", "0"])
elif len(mask_group) == 2:
mask_group.extend(["0", "0", "1", "0"])
elif len(mask_group) == 3:
mask_group.extend(["0", "1", "0"])
elif len(mask_group) == 4:
mask_group.extend(["1", "0"])
elif len(mask_group) == 5:
mask_group.append("0")
mask_batch.append(mask_group)
return mask_batch
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
masks = []
for i, mask_strategy in enumerate(mask_strategys):
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
if mask_strategy is None:
masks.append(mask)
continue
mask_strategy = process_mask_strategy(mask_strategy)
for mst in mask_strategy:
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
loop_id = int(loop_id)
if loop_id != loop_i:
continue
m_id = int(m_id)
m_ref_start = int(m_ref_start)
m_length = int(m_length)
m_target_start = int(m_target_start)
edit_ratio = float(edit_ratio)
ref = refs_x[i][m_id] # [C, T, H, W]
if m_ref_start < 0:
m_ref_start = ref.shape[1] + m_ref_start
if m_target_start < 0:
# z: [B, C, T, H, W]
m_target_start = z.shape[2] + m_target_start
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
mask[m_target_start : m_target_start + m_length] = edit_ratio
masks.append(mask)
masks = torch.stack(masks)
return masks
def process_prompts(prompts, num_loop):
ret_prompts = []
for prompt in prompts:
if prompt.startswith("|0|"):
prompt_list = prompt.split("|")[1:]
text_list = []
for i in range(0, len(prompt_list), 2):
start_loop = int(prompt_list[i])
text = prompt_list[i + 1]
text = text_preprocessing(text)
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
text_list.extend([text] * (end_loop - start_loop))
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
ret_prompts.append(text_list)
else:
prompt = text_preprocessing(prompt)
ret_prompts.append([prompt] * num_loop)
return ret_prompts
def extract_json_from_prompts(prompts):
additional_infos = []
ret_prompts = []
for prompt in prompts:
parts = re.split(r"(?=[{\[])", prompt)
assert len(parts) <= 2, f"Invalid prompt: {prompt}"
ret_prompts.append(parts[0])
if len(parts) == 1:
additional_infos.append({})
else:
additional_infos.append(json.loads(parts[1]))
return ret_prompts, additional_infos
def main():
# ======================================================
# 1. cfg and init distributed env
# ======================================================
cfg = parse_configs(training=False)
print(cfg)
has_colossal = False
try:
import colossalai
from colossalai.cluster import DistCoordinator
except:
colossalai = None
has_colossal = False
# init distributed
if os.environ.get("WORLD_SIZE", None) and has_colossal:
use_dist = True
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
if coordinator.world_size > 1:
set_sequence_parallel_group(dist.group.WORLD)
enable_sequence_parallelism = True
else:
enable_sequence_parallelism = False
else:
use_dist = False
enable_sequence_parallelism = False
# ======================================================
# 2. runtime variables
# ======================================================
torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = to_torch_dtype(cfg.dtype)
set_random_seed(seed=cfg.seed)
prompts = cfg.prompt
# ======================================================
# 3. build model & load weights
# ======================================================
# 3.1. build model
input_size = (cfg.num_frames, *cfg.image_size)
vae = build_module(cfg.vae, MODELS)
latent_size = vae.get_latent_size(input_size)
text_encoder = build_module(cfg.text_encoder, MODELS, device=device) # T5 must be fp32
model = build_module(
cfg.model,
MODELS,
input_size=latent_size,
in_channels=vae.out_channels,
caption_channels=text_encoder.output_dim,
model_max_length=text_encoder.model_max_length,
dtype=dtype,
enable_sequence_parallelism=enable_sequence_parallelism,
)
text_encoder.y_embedder = model.y_embedder # hack for classifier-free guidance
# 3.2. move to device & eval
vae = vae.to(device, dtype).eval()
model = model.to(device, dtype).eval()
# 3.3. build scheduler
scheduler = build_module(cfg.scheduler, SCHEDULERS)
# 3.4. support for multi-resolution
model_args = dict()
if cfg.multi_resolution == "PixArtMS":
image_size = cfg.image_size
hw = torch.tensor([image_size], device=device, dtype=dtype).repeat(cfg.batch_size, 1)
ar = torch.tensor([[image_size[0] / image_size[1]]], device=device, dtype=dtype).repeat(cfg.batch_size, 1)
model_args["data_info"] = dict(ar=ar, hw=hw)
elif cfg.multi_resolution == "STDiT2":
image_size = cfg.image_size
height = torch.tensor([image_size[0]], device=device, dtype=dtype).repeat(cfg.batch_size)
width = torch.tensor([image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size)
num_frames = torch.tensor([cfg.num_frames], device=device, dtype=dtype).repeat(cfg.batch_size)
ar = torch.tensor([image_size[0] / image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size)
if cfg.num_frames == 1:
cfg.fps = IMG_FPS
fps = torch.tensor([cfg.fps], device=device, dtype=dtype).repeat(cfg.batch_size)
model_args["height"] = height
model_args["width"] = width
model_args["num_frames"] = num_frames
model_args["ar"] = ar
model_args["fps"] = fps
# 3.5 reference
if cfg.reference_path is not None:
assert len(cfg.reference_path) == len(
prompts
), f"Reference path mismatch: {len(cfg.reference_path)} != {len(prompts)}"
assert len(cfg.reference_path) == len(
cfg.mask_strategy
), f"Mask strategy mismatch: {len(cfg.mask_strategy)} != {len(prompts)}"
else:
cfg.reference_path = [None] * len(prompts)
cfg.mask_strategy = [None] * len(prompts)
# ======================================================
# 4. inference
# ======================================================
sample_idx = 0
if cfg.sample_name is not None:
sample_name = cfg.sample_name
elif cfg.prompt_as_path:
sample_name = ""
else:
sample_name = "sample"
save_dir = cfg.save_dir
os.makedirs(save_dir, exist_ok=True)
# 4.1. batch generation
for i in range(0, len(prompts), cfg.batch_size):
batch_prompts_raw = prompts[i : i + cfg.batch_size]
batch_prompts_raw, additional_infos = extract_json_from_prompts(batch_prompts_raw)
batch_prompts_loops = process_prompts(batch_prompts_raw, cfg.loop)
# handle the last batch
if len(batch_prompts_raw) < cfg.batch_size and cfg.multi_resolution == "STDiT2":
model_args["height"] = model_args["height"][: len(batch_prompts_raw)]
model_args["width"] = model_args["width"][: len(batch_prompts_raw)]
model_args["num_frames"] = model_args["num_frames"][: len(batch_prompts_raw)]
model_args["ar"] = model_args["ar"][: len(batch_prompts_raw)]
model_args["fps"] = model_args["fps"][: len(batch_prompts_raw)]
# 4.2. load reference videos & images
for j, info in enumerate(additional_infos):
if "reference_path" in info:
cfg.reference_path[i + j] = info["reference_path"]
if "mask_strategy" in info:
cfg.mask_strategy[i + j] = info["mask_strategy"]
refs_x = collect_references_batch(cfg.reference_path[i : i + cfg.batch_size], vae, cfg.image_size)
mask_strategy = cfg.mask_strategy[i : i + cfg.batch_size]
# 4.3. diffusion sampling
old_sample_idx = sample_idx
# generate multiple samples for each prompt
for k in range(cfg.num_sample):
sample_idx = old_sample_idx
video_clips = []
# 4.4. long video generation
for loop_i in range(cfg.loop):
# 4.4 sample in hidden space
batch_prompts = [prompt[loop_i] for prompt in batch_prompts_loops]
# 4.5. apply mask strategy
masks = None
# if cfg.reference_path is not None:
if loop_i > 0:
ref_x = vae.encode(video_clips[-1])
for j, refs in enumerate(refs_x):
if refs is None:
refs_x[j] = [ref_x[j]]
else:
refs.append(ref_x[j])
if mask_strategy[j] is None:
mask_strategy[j] = ""
else:
mask_strategy[j] += ";"
mask_strategy[
j
] += f"{loop_i},{len(refs)-1},-{cfg.condition_frame_length},0,{cfg.condition_frame_length}"
# sampling
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
samples = scheduler.sample(
model,
text_encoder,
z=z,
prompts=batch_prompts,
device=device,
additional_args=model_args,
mask=masks, # scheduler must support mask
)
samples = vae.decode(samples.to(dtype))
video_clips.append(samples)
# 4.7. save video
if loop_i == cfg.loop - 1:
if not use_dist or coordinator.is_master():
for idx in range(len(video_clips[0])):
video_clips_i = [video_clips[0][idx]] + [
video_clips[i][idx][:, cfg.condition_frame_length :] for i in range(1, cfg.loop)
]
video = torch.cat(video_clips_i, dim=1)
print(f"Prompt: {batch_prompts_raw[idx]}")
if cfg.prompt_as_path:
sample_name_suffix = batch_prompts_raw[idx]
else:
sample_name_suffix = f"_{sample_idx}"
save_path = os.path.join(save_dir, f"{sample_name}{sample_name_suffix}")
if cfg.num_sample != 1:
save_path = f"{save_path}-{k}"
save_sample(video, fps=cfg.fps // cfg.frame_interval, save_path=save_path)
sample_idx += 1
if __name__ == "__main__":
main()
|