File size: 13,542 Bytes
5d32408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import json
import os
import re


import torch
import torch.distributed as dist
from mmengine.runner import set_random_seed

from videogen_hub.pipelines.opensora.opensora.acceleration.parallel_states import set_sequence_parallel_group
from videogen_hub.pipelines.opensora.opensora.datasets import IMG_FPS, save_sample
from videogen_hub.pipelines.opensora.opensora.datasets.utils import read_from_path
from videogen_hub.pipelines.opensora.opensora.models.text_encoder.t5 import text_preprocessing
from videogen_hub.pipelines.opensora.opensora.registry import MODELS, SCHEDULERS, build_module
from videogen_hub.pipelines.opensora.opensora.utils.config_utils import parse_configs
from videogen_hub.pipelines.opensora.opensora.utils.misc import to_torch_dtype


def collect_references_batch(reference_paths, vae, image_size):
    refs_x = []
    for reference_path in reference_paths:
        if reference_path is None:
            refs_x.append([])
            continue
        ref_path = reference_path.split(";")
        ref = []
        for r_path in ref_path:
            r = read_from_path(r_path, image_size, transform_name="resize_crop")
            r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
            r_x = r_x.squeeze(0)
            ref.append(r_x)
        refs_x.append(ref)
    # refs_x: [batch, ref_num, C, T, H, W]
    return refs_x


def process_mask_strategy(mask_strategy):
    mask_batch = []
    mask_strategy = mask_strategy.split(";")
    for mask in mask_strategy:
        mask_group = mask.split(",")
        assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
        if len(mask_group) == 1:
            mask_group.extend(["0", "0", "0", "1", "0"])
        elif len(mask_group) == 2:
            mask_group.extend(["0", "0", "1", "0"])
        elif len(mask_group) == 3:
            mask_group.extend(["0", "1", "0"])
        elif len(mask_group) == 4:
            mask_group.extend(["1", "0"])
        elif len(mask_group) == 5:
            mask_group.append("0")
        mask_batch.append(mask_group)
    return mask_batch


def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
    masks = []
    for i, mask_strategy in enumerate(mask_strategys):
        mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
        if mask_strategy is None:
            masks.append(mask)
            continue
        mask_strategy = process_mask_strategy(mask_strategy)
        for mst in mask_strategy:
            loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
            loop_id = int(loop_id)
            if loop_id != loop_i:
                continue
            m_id = int(m_id)
            m_ref_start = int(m_ref_start)
            m_length = int(m_length)
            m_target_start = int(m_target_start)
            edit_ratio = float(edit_ratio)
            ref = refs_x[i][m_id]  # [C, T, H, W]
            if m_ref_start < 0:
                m_ref_start = ref.shape[1] + m_ref_start
            if m_target_start < 0:
                # z: [B, C, T, H, W]
                m_target_start = z.shape[2] + m_target_start
            z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
            mask[m_target_start : m_target_start + m_length] = edit_ratio
        masks.append(mask)
    masks = torch.stack(masks)
    return masks


def process_prompts(prompts, num_loop):
    ret_prompts = []
    for prompt in prompts:
        if prompt.startswith("|0|"):
            prompt_list = prompt.split("|")[1:]
            text_list = []
            for i in range(0, len(prompt_list), 2):
                start_loop = int(prompt_list[i])
                text = prompt_list[i + 1]
                text = text_preprocessing(text)
                end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
                text_list.extend([text] * (end_loop - start_loop))
            assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
            ret_prompts.append(text_list)
        else:
            prompt = text_preprocessing(prompt)
            ret_prompts.append([prompt] * num_loop)
    return ret_prompts


def extract_json_from_prompts(prompts):
    additional_infos = []
    ret_prompts = []
    for prompt in prompts:
        parts = re.split(r"(?=[{\[])", prompt)
        assert len(parts) <= 2, f"Invalid prompt: {prompt}"
        ret_prompts.append(parts[0])
        if len(parts) == 1:
            additional_infos.append({})
        else:
            additional_infos.append(json.loads(parts[1]))
    return ret_prompts, additional_infos


def main():
    # ======================================================
    # 1. cfg and init distributed env
    # ======================================================
    cfg = parse_configs(training=False)
    print(cfg)

    has_colossal = False
    try:
        import colossalai
        from colossalai.cluster import DistCoordinator
    except:
        colossalai = None
        has_colossal = False

    # init distributed
    if os.environ.get("WORLD_SIZE", None) and has_colossal:
        use_dist = True
        colossalai.launch_from_torch({})
        coordinator = DistCoordinator()

        if coordinator.world_size > 1:
            set_sequence_parallel_group(dist.group.WORLD)
            enable_sequence_parallelism = True
        else:
            enable_sequence_parallelism = False
    else:
        use_dist = False
        enable_sequence_parallelism = False

    # ======================================================
    # 2. runtime variables
    # ======================================================
    torch.set_grad_enabled(False)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = to_torch_dtype(cfg.dtype)
    set_random_seed(seed=cfg.seed)
    prompts = cfg.prompt

    # ======================================================
    # 3. build model & load weights
    # ======================================================
    # 3.1. build model
    input_size = (cfg.num_frames, *cfg.image_size)
    vae = build_module(cfg.vae, MODELS)
    latent_size = vae.get_latent_size(input_size)
    text_encoder = build_module(cfg.text_encoder, MODELS, device=device)  # T5 must be fp32
    model = build_module(
        cfg.model,
        MODELS,
        input_size=latent_size,
        in_channels=vae.out_channels,
        caption_channels=text_encoder.output_dim,
        model_max_length=text_encoder.model_max_length,
        dtype=dtype,
        enable_sequence_parallelism=enable_sequence_parallelism,
    )
    text_encoder.y_embedder = model.y_embedder  # hack for classifier-free guidance

    # 3.2. move to device & eval
    vae = vae.to(device, dtype).eval()
    model = model.to(device, dtype).eval()

    # 3.3. build scheduler
    scheduler = build_module(cfg.scheduler, SCHEDULERS)

    # 3.4. support for multi-resolution
    model_args = dict()
    if cfg.multi_resolution == "PixArtMS":
        image_size = cfg.image_size
        hw = torch.tensor([image_size], device=device, dtype=dtype).repeat(cfg.batch_size, 1)
        ar = torch.tensor([[image_size[0] / image_size[1]]], device=device, dtype=dtype).repeat(cfg.batch_size, 1)
        model_args["data_info"] = dict(ar=ar, hw=hw)
    elif cfg.multi_resolution == "STDiT2":
        image_size = cfg.image_size
        height = torch.tensor([image_size[0]], device=device, dtype=dtype).repeat(cfg.batch_size)
        width = torch.tensor([image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size)
        num_frames = torch.tensor([cfg.num_frames], device=device, dtype=dtype).repeat(cfg.batch_size)
        ar = torch.tensor([image_size[0] / image_size[1]], device=device, dtype=dtype).repeat(cfg.batch_size)
        if cfg.num_frames == 1:
            cfg.fps = IMG_FPS
        fps = torch.tensor([cfg.fps], device=device, dtype=dtype).repeat(cfg.batch_size)
        model_args["height"] = height
        model_args["width"] = width
        model_args["num_frames"] = num_frames
        model_args["ar"] = ar
        model_args["fps"] = fps

    # 3.5 reference
    if cfg.reference_path is not None:
        assert len(cfg.reference_path) == len(
            prompts
        ), f"Reference path mismatch: {len(cfg.reference_path)} != {len(prompts)}"
        assert len(cfg.reference_path) == len(
            cfg.mask_strategy
        ), f"Mask strategy mismatch: {len(cfg.mask_strategy)} != {len(prompts)}"
    else:
        cfg.reference_path = [None] * len(prompts)
        cfg.mask_strategy = [None] * len(prompts)

    # ======================================================
    # 4. inference
    # ======================================================
    sample_idx = 0
    if cfg.sample_name is not None:
        sample_name = cfg.sample_name
    elif cfg.prompt_as_path:
        sample_name = ""
    else:
        sample_name = "sample"
    save_dir = cfg.save_dir
    os.makedirs(save_dir, exist_ok=True)

    # 4.1. batch generation
    for i in range(0, len(prompts), cfg.batch_size):
        batch_prompts_raw = prompts[i : i + cfg.batch_size]
        batch_prompts_raw, additional_infos = extract_json_from_prompts(batch_prompts_raw)
        batch_prompts_loops = process_prompts(batch_prompts_raw, cfg.loop)
        # handle the last batch
        if len(batch_prompts_raw) < cfg.batch_size and cfg.multi_resolution == "STDiT2":
            model_args["height"] = model_args["height"][: len(batch_prompts_raw)]
            model_args["width"] = model_args["width"][: len(batch_prompts_raw)]
            model_args["num_frames"] = model_args["num_frames"][: len(batch_prompts_raw)]
            model_args["ar"] = model_args["ar"][: len(batch_prompts_raw)]
            model_args["fps"] = model_args["fps"][: len(batch_prompts_raw)]

        # 4.2. load reference videos & images
        for j, info in enumerate(additional_infos):
            if "reference_path" in info:
                cfg.reference_path[i + j] = info["reference_path"]
            if "mask_strategy" in info:
                cfg.mask_strategy[i + j] = info["mask_strategy"]
        refs_x = collect_references_batch(cfg.reference_path[i : i + cfg.batch_size], vae, cfg.image_size)
        mask_strategy = cfg.mask_strategy[i : i + cfg.batch_size]

        # 4.3. diffusion sampling
        old_sample_idx = sample_idx
        # generate multiple samples for each prompt
        for k in range(cfg.num_sample):
            sample_idx = old_sample_idx
            video_clips = []

            # 4.4. long video generation
            for loop_i in range(cfg.loop):
                # 4.4 sample in hidden space
                batch_prompts = [prompt[loop_i] for prompt in batch_prompts_loops]

                # 4.5. apply mask strategy
                masks = None
                # if cfg.reference_path is not None:
                if loop_i > 0:
                    ref_x = vae.encode(video_clips[-1])
                    for j, refs in enumerate(refs_x):
                        if refs is None:
                            refs_x[j] = [ref_x[j]]
                        else:
                            refs.append(ref_x[j])
                        if mask_strategy[j] is None:
                            mask_strategy[j] = ""
                        else:
                            mask_strategy[j] += ";"
                        mask_strategy[
                            j
                        ] += f"{loop_i},{len(refs)-1},-{cfg.condition_frame_length},0,{cfg.condition_frame_length}"

                # sampling
                z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
                masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
                samples = scheduler.sample(
                    model,
                    text_encoder,
                    z=z,
                    prompts=batch_prompts,
                    device=device,
                    additional_args=model_args,
                    mask=masks,  # scheduler must support mask
                )
                samples = vae.decode(samples.to(dtype))
                video_clips.append(samples)

                # 4.7. save video
                if loop_i == cfg.loop - 1:
                    if not use_dist or coordinator.is_master():
                        for idx in range(len(video_clips[0])):
                            video_clips_i = [video_clips[0][idx]] + [
                                video_clips[i][idx][:, cfg.condition_frame_length :] for i in range(1, cfg.loop)
                            ]
                            video = torch.cat(video_clips_i, dim=1)
                            print(f"Prompt: {batch_prompts_raw[idx]}")
                            if cfg.prompt_as_path:
                                sample_name_suffix = batch_prompts_raw[idx]
                            else:
                                sample_name_suffix = f"_{sample_idx}"
                            save_path = os.path.join(save_dir, f"{sample_name}{sample_name_suffix}")
                            if cfg.num_sample != 1:
                                save_path = f"{save_path}-{k}"
                            save_sample(video, fps=cfg.fps // cfg.frame_interval, save_path=save_path)
                            sample_idx += 1


if __name__ == "__main__":
    main()