Spaces:
Runtime error
Runtime error
import evaluate | |
import datasets | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
class Fluency_Score(evaluate.Measurement): | |
def _info(self): | |
return evaluate.MeasurementInfo( | |
description="", | |
citation="", | |
inputs_description="", | |
features=datasets.Features( | |
{ | |
"texts": datasets.Value("string", id="sequence"), | |
} | |
), | |
reference_urls=[], | |
) | |
def _download_and_prepare(self, dl_manager, device=None): | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the tokenizer and model from the specified repository | |
self.tokenizer = AutoTokenizer.from_pretrained("Baleegh/Fluency_Score") | |
self.model = AutoModelForSequenceClassification.from_pretrained("Baleegh/Fluency_Score") | |
self.model.to(device) | |
self.device = device | |
def _compute(self, texts, temperature=2): | |
device = self.device | |
inputs = self.tokenizer( | |
texts, | |
return_tensors="pt", | |
truncation=True, | |
padding='max_length', | |
max_length=128 | |
).to(device) | |
with torch.inference_mode(): | |
output = self.model(**inputs) | |
prediction = output.logits.clip(0, 1) | |
return {"classical_score": prediction} | |