Spaces:
Running
Running
File size: 1,571 Bytes
6b4436c 565b974 6b4436c d95c212 6b4436c d95c212 565b974 d95c212 565b974 6b4436c d95c212 565b974 d95c212 3919100 d95c212 565b974 d95c212 565b974 d95c212 565b974 d95c212 565b974 d95c212 565b974 d95c212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import evaluate
import datasets
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
class FluencyScore(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description="Computes the fluency score of a given text using a pre-trained model.",
citation="",
inputs_description="A list of text strings to evaluate for fluency.",
features=datasets.Features(
{
"texts": datasets.Value("string", id="sequence"),
}
),
reference_urls=[],
)
def __init__(self, device=None):
super().__init__()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
# Load the tokenizer and model
self.tokenizer = AutoTokenizer.from_pretrained("Baleegh/Fluency_Score")
self.model = AutoModelForSequenceClassification.from_pretrained("Baleegh/Fluency_Score")
self.model.to(self.device)
def _compute(self, texts):
# Tokenize the input texts
inputs = self.tokenizer(
texts,
return_tensors="pt",
truncation=True,
padding='max_length',
max_length=128
).to(self.device)
# Get model predictions
with torch.no_grad():
output = self.model(**inputs)
predictions = output.logits.clip(0, 1).squeeze().tolist() # Convert to list
return {"fluency_scores": predictions} |