import gradio as gr from mosaic import Mosaic # adjust import as needed import spaces # Maximum number of model textboxes MAX_MODELS = 10 def update_textboxes(n_visible): """ Given the current visible count, increments it by 1 (up to MAX_MODELS) and returns updated visibility settings for all model textboxes. """ if n_visible < MAX_MODELS: n_visible += 1 # Create a list of update objects for each textbox: visible if its index is less than n_visible. updates = [] for i in range(MAX_MODELS): if i < n_visible: updates.append(gr.update(visible=True)) else: updates.append(gr.update(visible=False)) return n_visible, *updates # Function to decrease visible textboxes def remove_textboxes(n_visible): """ Given the current visible count, decrements it by 1 (down to 2) and returns updated visibility settings for all model textboxes, clearing the content of any hidden ones. """ if n_visible > 2: n_visible -= 1 updates = [] for i in range(MAX_MODELS): if i < n_visible: # keep visible, preserve existing value updates.append(gr.update(visible=True)) else: # hide and clear content updates.append(gr.update(visible=False, value="")) return (n_visible, *updates) @spaces.GPU() def run_scoring(input_text, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, threshold_choice, custom_threshold): """ Collect all non-empty model paths, instantiate Mosaic, compute the score, and return a message based on the threshold. """ model_paths = [] for m in [model1, model2, model3, model4, model5, model6, model7, model8, model9, model10]: if m.strip() != "": model_paths.append(m.strip()) if len(model_paths) < 2: return "Please enter at least two model paths.", None, None # Choose threshold value if threshold_choice == "default": threshold = 0.0 elif threshold_choice == "raid": threshold = 0.23 elif threshold_choice == "custom": threshold = custom_threshold else: threshold = 0.0 # Instantiate the Mosaic class with the selected model paths. mosaic_instance = Mosaic(model_name_or_paths=model_paths, one_model_mode=False) final_score = mosaic_instance.compute_end_score(input_text) if final_score < threshold: result_message = "This text was probably generated." else: result_message = "This text is likely human-written." return result_message, final_score, threshold with gr.Blocks() as demo: gr.Markdown("# MOSAIC Scoring App") with gr.Row(): input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text") with gr.Column(): gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**") gr.Markdown("### Model Paths (at least 2 required)") gr.Markdown("Order matters for model 1 only, the Reference model. Please use the one with the best perplexity on human texts. (The largest LLM if applicable.) GPT2 models are enough to detect easy prompts from chatgpt.") # State to keep track of the number of visible textboxes (starting with 2) n_models_state = gr.State(4) # Create 10 textboxes. We'll name them model1, model2, ..., model10. model1 = gr.Textbox(value="Unbabel/TowerBase-13B-v0.1", label="Model 1 Path ", visible=True) model2 = gr.Textbox(value="Unbabel/TowerBase-7B-v0.1", label="Model 2 Path", visible=True) model3 = gr.Textbox(value="meta-llama/Llama-2-7b-chat-hf", label="Model 3 Path", visible=True) model4 = gr.Textbox(value="meta-llama/Llama-2-7b-hf", label="Model 4 Path", visible=True) model5 = gr.Textbox(value="", label="Model 5 Path", visible=False) model6 = gr.Textbox(value="", label="Model 6 Path", visible=False) model7 = gr.Textbox(value="", label="Model 7 Path", visible=False) model8 = gr.Textbox(value="", label="Model 8 Path", visible=False) model9 = gr.Textbox(value="", label="Model 9 Path", visible=False) model10 = gr.Textbox(value="", label="Model 10 Path", visible=False) # Add plus and minus buttons to reveal/hide textboxes. with gr.Row(): plus_button = gr.Button("+", elem_id="plus_button") minus_button = gr.Button("-", elem_id="minus_button") # Bind click events plus_button.click( fn=update_textboxes, inputs=n_models_state, outputs=[n_models_state, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10] ) minus_button.click( fn=remove_textboxes, inputs=n_models_state, outputs=[n_models_state, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10] ) with gr.Row(): threshold_choice = gr.Radio(choices=["default", "raid", "custom"], value="default", label="Threshold Choice") custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)") with gr.Row(): output_message = gr.Textbox(label="Result Message") output_score = gr.Number(label="Final Score") output_threshold = gr.Number(label="Threshold Used") run_button = gr.Button("Run Scoring") run_button.click( fn=run_scoring, inputs=[input_text, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, threshold_choice, custom_threshold], outputs=[output_message, output_score, output_threshold] ) demo.launch()