MOSAIC / app.py
BaggerOfWords's picture
add spaces compatibility
518f93e
raw
history blame
5.73 kB
import gradio as gr
from mosaic import Mosaic # adjust import as needed
import spaces
# Maximum number of model textboxes
MAX_MODELS = 10
def update_textboxes(n_visible):
"""
Given the current visible count, increments it by 1 (up to MAX_MODELS)
and returns updated visibility settings for all model textboxes.
"""
if n_visible < MAX_MODELS:
n_visible += 1
# Create a list of update objects for each textbox: visible if its index is less than n_visible.
updates = []
for i in range(MAX_MODELS):
if i < n_visible:
updates.append(gr.update(visible=True))
else:
updates.append(gr.update(visible=False))
return n_visible, *updates
# Function to decrease visible textboxes
def remove_textboxes(n_visible):
"""
Given the current visible count, decrements it by 1 (down to 2)
and returns updated visibility settings for all model textboxes,
clearing the content of any hidden ones.
"""
if n_visible > 2:
n_visible -= 1
updates = []
for i in range(MAX_MODELS):
if i < n_visible:
# keep visible, preserve existing value
updates.append(gr.update(visible=True))
else:
# hide and clear content
updates.append(gr.update(visible=False, value=""))
return (n_visible, *updates)
@spaces.GPU()
def run_scoring(input_text, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, threshold_choice, custom_threshold):
"""
Collect all non-empty model paths, instantiate Mosaic, compute the score,
and return a message based on the threshold.
"""
model_paths = []
for m in [model1, model2, model3, model4, model5, model6, model7, model8, model9, model10]:
if m.strip() != "":
model_paths.append(m.strip())
if len(model_paths) < 2:
return "Please enter at least two model paths.", None, None
# Choose threshold value
if threshold_choice == "default":
threshold = 0.0
elif threshold_choice == "raid":
threshold = 0.23
elif threshold_choice == "custom":
threshold = custom_threshold
else:
threshold = 0.0
# Instantiate the Mosaic class with the selected model paths.
mosaic_instance = Mosaic(model_name_or_paths=model_paths, one_model_mode=False)
final_score = mosaic_instance.compute_end_score(input_text)
if final_score < threshold:
result_message = "This text was probably generated."
else:
result_message = "This text is likely human-written."
return result_message, final_score, threshold
with gr.Blocks() as demo:
gr.Markdown("# MOSAIC Scoring App")
with gr.Row():
input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")
with gr.Column():
gr.Markdown("**⚠️ Please make sure all models have the same tokenizer or it won’t work.**")
gr.Markdown("### Model Paths (at least 2 required)")
gr.Markdown("Order matters for model 1 only, the Reference model. Please use the one with the best perplexity on human texts. (The largest LLM if applicable.) GPT2 models are enough to detect easy prompts from chatgpt.")
# State to keep track of the number of visible textboxes (starting with 2)
n_models_state = gr.State(4)
# Create 10 textboxes. We'll name them model1, model2, ..., model10.
model1 = gr.Textbox(value="Unbabel/TowerBase-13B-v0.1", label="Model 1 Path ", visible=True)
model2 = gr.Textbox(value="Unbabel/TowerBase-7B-v0.1", label="Model 2 Path", visible=True)
model3 = gr.Textbox(value="meta-llama/Llama-2-7b-chat-hf", label="Model 3 Path", visible=True)
model4 = gr.Textbox(value="meta-llama/Llama-2-7b-hf", label="Model 4 Path", visible=True)
model5 = gr.Textbox(value="", label="Model 5 Path", visible=False)
model6 = gr.Textbox(value="", label="Model 6 Path", visible=False)
model7 = gr.Textbox(value="", label="Model 7 Path", visible=False)
model8 = gr.Textbox(value="", label="Model 8 Path", visible=False)
model9 = gr.Textbox(value="", label="Model 9 Path", visible=False)
model10 = gr.Textbox(value="", label="Model 10 Path", visible=False)
# Add plus and minus buttons to reveal/hide textboxes.
with gr.Row():
plus_button = gr.Button("+", elem_id="plus_button")
minus_button = gr.Button("-", elem_id="minus_button")
# Bind click events
plus_button.click(
fn=update_textboxes,
inputs=n_models_state,
outputs=[n_models_state, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10]
)
minus_button.click(
fn=remove_textboxes,
inputs=n_models_state,
outputs=[n_models_state, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10]
)
with gr.Row():
threshold_choice = gr.Radio(choices=["default", "raid", "custom"], value="default", label="Threshold Choice")
custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)")
with gr.Row():
output_message = gr.Textbox(label="Result Message")
output_score = gr.Number(label="Final Score")
output_threshold = gr.Number(label="Threshold Used")
run_button = gr.Button("Run Scoring")
run_button.click(
fn=run_scoring,
inputs=[input_text, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, threshold_choice, custom_threshold],
outputs=[output_message, output_score, output_threshold]
)
demo.launch()