Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from mosaic import Mosaic # adjust import as needed | |
# Maximum number of model textboxes | |
MAX_MODELS = 10 | |
def update_textboxes(n_visible): | |
""" | |
Given the current visible count, increments it by 1 (up to MAX_MODELS) | |
and returns updated visibility settings for all model textboxes. | |
""" | |
if n_visible < MAX_MODELS: | |
n_visible += 1 | |
# Create a list of update objects for each textbox: visible if its index is less than n_visible. | |
updates = [] | |
for i in range(MAX_MODELS): | |
if i < n_visible: | |
updates.append(gr.update(visible=True)) | |
else: | |
updates.append(gr.update(visible=False)) | |
return n_visible, *updates | |
def run_scoring(input_text, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, threshold_choice, custom_threshold): | |
""" | |
Collect all non-empty model paths, instantiate Mosaic, compute the score, | |
and return a message based on the threshold. | |
""" | |
model_paths = [] | |
for m in [model1, model2, model3, model4, model5, model6, model7, model8, model9, model10]: | |
if m.strip() != "": | |
model_paths.append(m.strip()) | |
if len(model_paths) < 2: | |
return "Please enter at least two model paths.", None, None | |
# Choose threshold value | |
if threshold_choice == "default": | |
threshold = 0.0 | |
elif threshold_choice == "raid": | |
threshold = 0.23 | |
elif threshold_choice == "custom": | |
threshold = custom_threshold | |
else: | |
threshold = 0.0 | |
# Instantiate the Mosaic class with the selected model paths. | |
mosaic_instance = Mosaic(model_name_or_paths=model_paths, one_model_mode=False) | |
final_score = mosaic_instance.compute_end_score(input_text) | |
if final_score < threshold: | |
result_message = "This text was probably generated." | |
else: | |
result_message = "This text is likely human-generated." | |
return result_message, final_score, threshold | |
with gr.Blocks() as demo: | |
gr.Markdown("# MOSAIC Scoring App") | |
with gr.Row(): | |
input_text = gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text") | |
with gr.Column(): | |
gr.Markdown("### Model Paths (at least 2 required)") | |
gr.Markdown("Order matters for model 1 only, the Reference model. Please use the one with the best perplexity on human texts. (The largest LLM if applicable.) GPT2 models are enough to detect easy prompts from chatgpt.") | |
# State to keep track of the number of visible textboxes (starting with 2) | |
n_models_state = gr.State(2) | |
# Create 10 textboxes. We'll name them model1, model2, ..., model10. | |
model1 = gr.Textbox(value="openai-community/gpt2-large", label="Model 1 Path ", visible=True) | |
model2 = gr.Textbox(value="openai-community/gpt2-medium", label="Model 2 Path", visible=True) | |
model3 = gr.Textbox(value="", label="Model 3 Path", visible=False) | |
model4 = gr.Textbox(value="", label="Model 4 Path", visible=False) | |
model5 = gr.Textbox(value="", label="Model 5 Path", visible=False) | |
model6 = gr.Textbox(value="", label="Model 6 Path", visible=False) | |
model7 = gr.Textbox(value="", label="Model 7 Path", visible=False) | |
model8 = gr.Textbox(value="", label="Model 8 Path", visible=False) | |
model9 = gr.Textbox(value="", label="Model 9 Path", visible=False) | |
model10 = gr.Textbox(value="", label="Model 10 Path", visible=False) | |
# Add a plus button to reveal one more textbox. | |
plus_button = gr.Button("+", elem_id="plus_button") | |
# When plus_button is clicked, update n_models_state and all model textboxes. | |
plus_button.click( | |
fn=update_textboxes, | |
inputs=n_models_state, | |
outputs=[n_models_state, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10] | |
) | |
with gr.Row(): | |
threshold_choice = gr.Radio(choices=["default", "raid", "custom"], value="default", label="Threshold Choice") | |
custom_threshold = gr.Number(value=0.0, label="Custom Threshold (if 'custom' selected)") | |
with gr.Row(): | |
output_message = gr.Textbox(label="Result Message") | |
output_score = gr.Number(label="Final Score") | |
output_threshold = gr.Number(label="Threshold Used") | |
run_button = gr.Button("Run Scoring") | |
run_button.click( | |
fn=run_scoring, | |
inputs=[input_text, model1, model2, model3, model4, model5, model6, model7, model8, model9, model10, threshold_choice, custom_threshold], | |
outputs=[output_message, output_score, output_threshold] | |
) | |
demo.launch() | |