Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import requests
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from plottable import Table
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
import random
|
| 11 |
+
|
| 12 |
+
def classify_image(upload, url, labels):
|
| 13 |
+
"""
|
| 14 |
+
Classify the image either from an uploaded file or a URL with given labels.
|
| 15 |
+
"""
|
| 16 |
+
# Check if an image file is uploaded
|
| 17 |
+
if upload is not None:
|
| 18 |
+
# Read the uploaded file as a byte stream
|
| 19 |
+
image = Image.open(BytesIO(upload))
|
| 20 |
+
# Otherwise, load the image from the provided URL
|
| 21 |
+
elif url is not None:
|
| 22 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 23 |
+
# If neither, return a message prompting for an input
|
| 24 |
+
else:
|
| 25 |
+
return "Please upload an image or enter an image URL."
|
| 26 |
+
|
| 27 |
+
# Split the labels by comma and strip whitespace
|
| 28 |
+
labels_list = [label.strip() for label in labels.split(',')]
|
| 29 |
+
|
| 30 |
+
# Load the image classification model
|
| 31 |
+
image_classifier = pipeline(task="zero-shot-image-classification", model="google/siglip-so400m-patch14-384")
|
| 32 |
+
|
| 33 |
+
# Perform inference
|
| 34 |
+
outputs = image_classifier(image, candidate_labels=labels_list)
|
| 35 |
+
|
| 36 |
+
# Process outputs
|
| 37 |
+
labels = [output["label"] for output in outputs]
|
| 38 |
+
scores = [output["score"] for output in outputs]
|
| 39 |
+
|
| 40 |
+
# Normalize scores to sum up to 100%
|
| 41 |
+
total_score = sum(scores)
|
| 42 |
+
normalized_scores = [round(score * 100 / total_score, 2) for score in scores]
|
| 43 |
+
|
| 44 |
+
# Plot the horizontal bar chart with different colors for each label
|
| 45 |
+
plt.figure(figsize=(10, 6))
|
| 46 |
+
colors = [plt.cm.viridis(i/len(labels)) for i in range(len(labels))]
|
| 47 |
+
plt.barh(labels, normalized_scores, color=colors)
|
| 48 |
+
plt.xlabel('Score (%)')
|
| 49 |
+
plt.ylabel('Labels')
|
| 50 |
+
plt.title('Classification Results')
|
| 51 |
+
plt.gca().invert_yaxis() # Invert y-axis to display labels from top to bottom
|
| 52 |
+
plt.tight_layout()
|
| 53 |
+
|
| 54 |
+
# Save the plot to a BytesIO object
|
| 55 |
+
buf = BytesIO()
|
| 56 |
+
plt.savefig(buf, format='png')
|
| 57 |
+
buf.seek(0)
|
| 58 |
+
|
| 59 |
+
# Convert BytesIO object to image
|
| 60 |
+
result_image = Image.open(buf)
|
| 61 |
+
|
| 62 |
+
# Create a DataFrame for the classification results
|
| 63 |
+
df = pd.DataFrame({"Labels": labels, "Scores (%)": normalized_scores})
|
| 64 |
+
|
| 65 |
+
# Create a plottable table
|
| 66 |
+
tab = Table(df)
|
| 67 |
+
|
| 68 |
+
# Plot the table using matplotlib
|
| 69 |
+
fig, ax = plt.subplots(figsize=(6, 5))
|
| 70 |
+
ax.axis('tight')
|
| 71 |
+
ax.axis('off')
|
| 72 |
+
ax.table(cellText=df.values, colLabels=df.columns, loc='center')
|
| 73 |
+
|
| 74 |
+
# Save the figure to a BytesIO object
|
| 75 |
+
buf_table = BytesIO()
|
| 76 |
+
plt.savefig(buf_table, format='png')
|
| 77 |
+
buf_table.seek(0)
|
| 78 |
+
|
| 79 |
+
# Convert BytesIO object to image
|
| 80 |
+
result_table_image = Image.open(buf_table)
|
| 81 |
+
|
| 82 |
+
return result_image, result_table_image
|
| 83 |
+
|
| 84 |
+
# Create the Gradio interface
|
| 85 |
+
interface = gr.Interface(
|
| 86 |
+
fn=classify_image,
|
| 87 |
+
inputs=[
|
| 88 |
+
gr.File(type="binary", label="Upload Image"),
|
| 89 |
+
gr.Textbox(label="Or, enter Image URL"),
|
| 90 |
+
gr.Textbox(label="Enter labels separated by commas (e.g., animal, human, building)")
|
| 91 |
+
],
|
| 92 |
+
outputs=[
|
| 93 |
+
gr.Image(label="Classification Results (Bar Chart)"),
|
| 94 |
+
gr.Image(label="Classification Results (Table)")
|
| 95 |
+
],
|
| 96 |
+
title="Image Classifier",
|
| 97 |
+
description="Upload an image or enter an image URL, then specify labels to classify the image."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Launch the app
|
| 101 |
+
interface.launch()
|