FrozenBurning
single view to 3D init release
81ecb2b
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
""" MVP decoder """
import math
from typing import Optional, Dict, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import models.utils
from models.utils import LinearELR, ConvTranspose2dELR, ConvTranspose3dELR
@torch.jit.script
def compute_postex(geo, idxim, barim, volradius : float):
# compute 3d coordinates of each texel in uv map
return (
barim[None, :, :, 0, None] * geo[:, idxim[:, :, 0], :] +
barim[None, :, :, 1, None] * geo[:, idxim[:, :, 1], :] +
barim[None, :, :, 2, None] * geo[:, idxim[:, :, 2], :]
).permute(0, 3, 1, 2) / volradius
@torch.jit.script
def compute_tbn(v0, v1, v2, vt0, vt1, vt2):
v01 = v1 - v0
v02 = v2 - v0
vt01 = vt1 - vt0
vt02 = vt2 - vt0
f = 1. / (vt01[None, :, :, 0] * vt02[None, :, :, 1] - vt01[None, :, :, 1] * vt02[None, :, :, 0])
tangent = f[:, :, :, None] * torch.stack([
v01[:, :, :, 0] * vt02[None, :, :, 1] - v02[:, :, :, 0] * vt01[None, :, :, 1],
v01[:, :, :, 1] * vt02[None, :, :, 1] - v02[:, :, :, 1] * vt01[None, :, :, 1],
v01[:, :, :, 2] * vt02[None, :, :, 1] - v02[:, :, :, 2] * vt01[None, :, :, 1]], dim=-1)
tangent = F.normalize(tangent, dim=-1)
normal = torch.cross(v01, v02, dim=3)
normal = F.normalize(normal, dim=-1)
bitangent = torch.cross(tangent, normal, dim=3)
bitangent = F.normalize(bitangent, dim=-1)
# create matrix
primrotmesh = torch.stack((tangent, bitangent, normal), dim=-1)
return primrotmesh
class Reshape(nn.Module):
def __init__(self, *args):
super(Reshape, self).__init__()
self.shape = args
def forward(self, x):
return x.view(self.shape)
# RGBA decoder
class SlabContentDecoder(nn.Module):
def __init__(self, nprims, primsize, inch, outch, chstart=256, hstart=4,
texwarp=False, elr=True, norm=None, mod=False, ub=True, upconv=None,
penultch=None, use3dconv=False, reduced3dch=False):
super(SlabContentDecoder, self).__init__()
assert not texwarp
assert upconv == None
self.nprims = nprims
self.primsize = primsize
self.nprimy = int(math.sqrt(nprims))
self.nprimx = nprims // self.nprimy
assert nprims == self.nprimx * self.nprimy
self.slabw = self.nprimx * primsize[0]
self.slabh = self.nprimy * primsize[1]
self.slabd = primsize[2]
nlayers = int(math.log2(min(self.slabw, self.slabh))) - int(math.log2(hstart))
nlayers3d = int(math.log2(self.slabd))
nlayers2d = nlayers - nlayers3d
lastch = chstart
dims = (1, hstart, hstart * self.nprimx // self.nprimy)
layers = []
layers.append(LinearELR(inch, chstart*dims[1]*dims[2], act=nn.LeakyReLU(0.2)))
layers.append(Reshape(-1, chstart, dims[1], dims[2]))
for i in range(nlayers):
nextch = lastch if i % 2 == 0 else lastch // 2
if use3dconv and reduced3dch and i >= nlayers2d:
nextch //= 2
if i == nlayers - 2 and penultch is not None:
nextch = penultch
if use3dconv and i >= nlayers2d:
if i == nlayers2d:
layers.append(Reshape(-1, lastch, 1, dims[1], dims[2]))
layers.append(ConvTranspose3dELR(
lastch,
(outch if i == nlayers - 1 else nextch),
4, 2, 1,
ub=(dims[0]*2, dims[1]*2, dims[2]*2) if ub else None,
norm=None if i == nlayers - 1 else norm,
act=None if i == nlayers - 1 else nn.LeakyReLU(0.2)
))
else:
layers.append(ConvTranspose2dELR(
lastch,
(outch * primsize[2] if i == nlayers - 1 else nextch),
4, 2, 1,
ub=(dims[1]*2, dims[2]*2) if ub else None,
norm=None if i == nlayers - 1 else norm,
act=None if i == nlayers - 1 else nn.LeakyReLU(0.2)
))
lastch = nextch
dims = (dims[0] * (2 if use3dconv and i >= nlayers2d else 1), dims[1] * 2, dims[2] * 2)
self.mod = nn.Sequential(*layers)
def forward(self, enc, renderoptions : Dict[str, str], trainiter : Optional[int]=None):
x = self.mod(enc)
algo = renderoptions.get("algo")
chlast = renderoptions.get("chlast")
if chlast is not None and bool(chlast):
# reorder channels last
if len(x.size()) == 5:
outch = x.size(1)
x = x.view(x.size(0), outch, self.primsize[2], self.nprimy, self.primsize[1], self.nprimx, self.primsize[0])
x = x.permute(0, 3, 5, 2, 4, 6, 1)
x = x.reshape(x.size(0), self.nprims, self.primsize[2], self.primsize[1], self.primsize[0], outch)
else:
outch = x.size(1) // self.primsize[2]
x = x.view(x.size(0), self.primsize[2], outch, self.nprimy, self.primsize[1], self.nprimx, self.primsize[0])
x = x.permute(0, 3, 5, 1, 4, 6, 2)
x = x.reshape(x.size(0), self.nprims, self.primsize[2], self.primsize[1], self.primsize[0], outch)
else:
if len(x.size()) == 5:
outch = x.size(1)
x = x.view(x.size(0), outch, self.primsize[2], self.nprimy, self.primsize[1], self.nprimx, self.primsize[0])
x = x.permute(0, 3, 5, 1, 2, 4, 6)
x = x.reshape(x.size(0), self.nprims, outch, self.primsize[2], self.primsize[1], self.primsize[0])
else:
outch = x.size(1) // self.primsize[2]
x = x.view(x.size(0), self.primsize[2], outch, self.nprimy, self.primsize[1], self.nprimx, self.primsize[0])
x = x.permute(0, 3, 5, 2, 1, 4, 6)
x = x.reshape(x.size(0), self.nprims, outch, self.primsize[2], self.primsize[1], self.primsize[0])
return x
def get_dec(dectype, **kwargs):
if dectype == "slab2d":
return SlabContentDecoder(**kwargs, use3dconv=False)
elif dectype == "slab2d3d":
return SlabContentDecoder(**kwargs, use3dconv=True)
elif dectype == "slab2d3dv2":
return SlabContentDecoder(**kwargs, use3dconv=True, reduced3dch=True)
else:
raise
# motion model for the delta from mesh-based position/orientation
class DeconvMotionModel(nn.Module):
def __init__(self, nprims, inch, outch, chstart=1024,
norm=None, mod=False, elr=True):
super(DeconvMotionModel, self).__init__()
self.nprims = nprims
self.nprimy = int(math.sqrt(nprims))
self.nprimx = nprims // int(math.sqrt(nprims))
assert nprims == self.nprimx * self.nprimy
nlayers = int(math.log2(min(self.nprimx, self.nprimy)))
ch0, ch1 = chstart, chstart // 2
layers = []
layers.append(LinearELR(inch, ch0, norm=norm, act=nn.LeakyReLU(0.2)))
layers.append(Reshape(-1, ch0, 1, self.nprimx // self.nprimy))
dims = (1, 1, self.nprimx // self.nprimy)
for i in range(nlayers):
layers.append(ConvTranspose2dELR(
ch0,
(outch if i == nlayers - 1 else ch1),
4, 2, 1,
norm=None if i == nlayers - 1 else norm,
act=None if i == nlayers - 1 else nn.LeakyReLU(0.2)
))
if ch0 == ch1:
ch1 = ch0 // 2
else:
ch0 = ch1
self.mod = nn.Sequential(*layers)
def forward(self, encoding):
out = self.mod(encoding)
out = out.view(encoding.size(0), 9, -1).permute(0, 2, 1).contiguous()
primposdelta = out[:, :, 0:3]
primrvecdelta = out[:, :, 3:6]
primscaledelta = out[:, :, 6:9]
return primposdelta, primrvecdelta, primscaledelta
def get_motion(motiontype, **kwargs):
if motiontype == "deconv":
return DeconvMotionModel(**kwargs)
else:
raise
class Decoder(nn.Module):
def __init__(self,
vt,
vertmean,
vertstd,
idxim,
tidxim,
barim,
volradius,
dectype="slab2d",
nprims=512,
primsize=(32, 32, 32),
chstart=256,
penultch=None,
condsize=0,
motiontype="deconv",
warptype=None,
warpprimsize=None,
sharedrgba=False,
norm=None,
mod=False,
elr=True,
scalemult=2.,
nogeo=False,
notplateact=False,
postrainstart=-1,
alphatrainstart=-1,
renderoptions={},
**kwargs):
"""
Parameters
----------
vt : numpy.array [V, 2]
mesh vertex texture coordinates
vertmean : numpy.array [V, 3]
mesh vertex position average (average over time)
vertstd : float
mesh vertex position standard deviation (over time)
idxim : torch.Tensor
texture map of triangle indices
tidxim : torch.Tensor
texture map of texture triangle indices
barim : torch.Tensor
texture map of barycentric coordinates
volradius : float
radius of bounding volume of scene
dectype : string
type of content decoder, options are "slab2d", "slab2d3d", "slab2d3dv2"
nprims : int
number of primitives
primsize : Tuple[int, int, int]
size of primitive dimensions
postrainstart : int
training iterations to start learning position, rotation, and
scaling (i.e., primitives stay frozen until this iteration number)
condsize : int
unused
motiontype : string
motion model, options are "linear" and "deconv"
warptype : string
warp model, options are "same" to use same architecture as content
or None
sharedrgba : bool
True to use 1 branch to output rgba, False to use 1 branch for rgb
and 1 branch for alpha
"""
super(Decoder, self).__init__()
self.volradius = volradius
self.postrainstart = postrainstart
self.alphatrainstart = alphatrainstart
self.nprims = nprims
self.primsize = primsize
self.motiontype = motiontype
self.nogeo = nogeo
self.notplateact = notplateact
self.scalemult = scalemult
self.enc = LinearELR(256 + condsize, 256)
# vertex output
if not self.nogeo:
self.geobranch = LinearELR(256, vertmean.numel(), norm=None)
# primitive motion delta decoder
self.motiondec = get_motion(motiontype, nprims=nprims, inch=256, outch=9,
norm=norm, mod=mod, elr=elr, **kwargs)
# slab decoder (RGBA)
if sharedrgba:
self.rgbadec = get_dec(dectype, nprims=nprims, primsize=primsize,
inch=256+3, outch=4, norm=norm, mod=mod, elr=elr,
penultch=penultch, **kwargs)
if renderoptions.get("half", False):
self.rgbadec = self.rgbadec.half()
if renderoptions.get("chlastconv", False):
self.rgbadec = self.rgbadec.to(memory_format=torch.channels_last)
else:
self.rgbdec = get_dec(dectype, nprims=nprims, primsize=primsize,
inch=256+3, outch=3, chstart=chstart, norm=norm, mod=mod,
elr=elr, penultch=penultch, **kwargs)
self.alphadec = get_dec(dectype, nprims=nprims, primsize=primsize,
inch=256, outch=1, chstart=chstart, norm=norm, mod=mod,
elr=elr, penultch=penultch, **kwargs)
self.rgbadec = None
if renderoptions.get("half", False):
self.rgbdec = self.rgbdec.half()
self.alphadec = self.alphadec.half()
if renderoptions.get("chlastconv", False):
self.rgbdec = self.rgbdec.to(memory_format=torch.channels_last)
self.alphadec = self.alphadec.to(memory_format=torch.channels_last)
# warp field decoder
if warptype is not None:
self.warpdec = get_dec(warptype, nprims=nprims, primsize=warpprimsize,
inch=256, outch=3, chstart=chstart, norm=norm, mod=mod, elr=elr, **kwargs)
else:
self.warpdec = None
# vertex/triangle/mesh topology data
if vt is not None:
vt = torch.tensor(vt) if not isinstance(vt, torch.Tensor) else vt
self.register_buffer("vt", vt, persistent=False)
if vertmean is not None:
self.register_buffer("vertmean", vertmean, persistent=False)
self.vertstd = vertstd
idxim = torch.tensor(idxim) if not isinstance(idxim, torch.Tensor) else idxim
tidxim = torch.tensor(tidxim) if not isinstance(tidxim, torch.Tensor) else tidxim
barim = torch.tensor(barim) if not isinstance(barim, torch.Tensor) else barim
self.register_buffer("idxim", idxim.long(), persistent=False)
self.register_buffer("tidxim", tidxim.long(), persistent=False)
self.register_buffer("barim", barim, persistent=False)
def forward(self,
encoding,
viewpos,
condinput : Optional[torch.Tensor]=None,
renderoptions : Optional[Dict[str, str]]=None,
trainiter : int=-1,
evaliter : Optional[torch.Tensor]=None,
losslist : Optional[List[str]]=None,
modelmatrix : Optional[torch.Tensor]=None):
"""
Parameters
----------
encoding : torch.Tensor [B, 256]
Encoding of current frame
viewpos : torch.Tensor [B, 3]
Viewing position of target camera view
condinput : torch.Tensor [B, ?]
Additional conditioning input (e.g., headpose)
renderoptions : dict
Options for rendering (e.g., rendering debug images)
trainiter : int,
Current training iteration
losslist : list,
List of losses to compute and return
Returns
-------
result : dict,
Contains predicted vertex positions, primitive contents and
locations, scaling, and orientation, and any losses.
"""
assert renderoptions is not None
assert losslist is not None
if condinput is not None:
encoding = torch.cat([encoding, condinput], dim=1)
encoding = self.enc(encoding)
viewdirs = F.normalize(viewpos, dim=1)
if int(math.sqrt(self.nprims)) ** 2 == self.nprims:
nprimsy = int(math.sqrt(self.nprims))
else:
nprimsy = int(math.sqrt(self.nprims // 2))
nprimsx = self.nprims // nprimsy
assert nprimsx * nprimsy == self.nprims
if not self.nogeo:
# decode mesh vertices
# geo [6, 7306, 3]
geo = self.geobranch(encoding)
geo = geo.view(encoding.size(0), -1, 3)
geo = geo * self.vertstd + self.vertmean
# placement of primitives on mesh
uvheight, uvwidth = self.barim.size(0), self.barim.size(1)
stridey = uvheight // nprimsy
stridex = uvwidth // nprimsx
# get subset of vertices and texture map coordinates to compute TBN matrix
v0 = geo[:, self.idxim[stridey//2::stridey, stridex//2::stridex, 0], :]
v1 = geo[:, self.idxim[stridey//2::stridey, stridex//2::stridex, 1], :]
v2 = geo[:, self.idxim[stridey//2::stridey, stridex//2::stridex, 2], :]
vt0 = self.vt[self.tidxim[stridey//2::stridey, stridex//2::stridex, 0], :]
vt1 = self.vt[self.tidxim[stridey//2::stridey, stridex//2::stridex, 1], :]
vt2 = self.vt[self.tidxim[stridey//2::stridey, stridex//2::stridex, 2], :]
# [6, 256, 3]
primposmesh = (
self.barim[None, stridey//2::stridey, stridex//2::stridex, 0, None] * v0 +
self.barim[None, stridey//2::stridey, stridex//2::stridex, 1, None] * v1 +
self.barim[None, stridey//2::stridey, stridex//2::stridex, 2, None] * v2
).view(v0.size(0), self.nprims, 3) / self.volradius
# compute TBN matrix
# primrotmesh [6, 16, 16, 3, 3]
primrotmesh = compute_tbn(v0, v1, v2, vt0, vt1, vt2)
# decode motion deltas [6, 256, 3]
primposdelta, primrvecdelta, primscaledelta = self.motiondec(encoding)
if trainiter <= self.postrainstart:
primposdelta = primposdelta * 0.
primrvecdelta = primrvecdelta * 0.
primscaledelta = primscaledelta * 0.
# compose mesh transform with deltas
primpos = primposmesh + primposdelta * 0.01
primrotdelta = models.utils.axisangle_to_matrix(primrvecdelta * 0.01)
primrot = torch.bmm(
primrotmesh.view(-1, 3, 3),
primrotdelta.view(-1, 3, 3)).view(encoding.size(0), self.nprims, 3, 3)
primscale = (self.scalemult * int(self.nprims ** (1. / 3))) * torch.exp(primscaledelta * 0.01)
primtransf = None
else:
geo = None
# decode motion deltas
primposdelta, primrvecdelta, primscaledelta = self.motiondec(encoding)
if trainiter <= self.postrainstart:
primposdelta = primposdelta * 0.
primrvecdelta = primrvecdelta * 0.
primscaledelta = primscaledelta * 0. + 1.
primpos = primposdelta * 0.3
primrotdelta = models.utils.axisangle_to_matrix(primrvecdelta * 0.3)
primrot = torch.exp(primrotdelta * 0.01)
primscale = (self.scalemult * int(self.nprims ** (1. / 3))) * primscaledelta
primtransf = None
# options
algo = renderoptions.get("algo")
chlast = renderoptions.get("chlast")
half = renderoptions.get("half")
if self.rgbadec is not None:
# shared rgb and alpha branch
scale = torch.tensor([25., 25., 25., 1.], device=encoding.device)
bias = torch.tensor([100., 100., 100., 0.], device=encoding.device)
if chlast is not None and bool(chlast):
scale = scale[None, None, None, None, None, :]
bias = bias[None, None, None, None, None, :]
else:
scale = scale[None, None, :, None, None, None]
bias = bias[None, None, :, None, None, None]
templatein = torch.cat([encoding, viewdirs], dim=1)
if half is not None and bool(half):
templatein = templatein.half()
template = self.rgbadec(templatein, trainiter=trainiter, renderoptions=renderoptions)
template = bias + scale * template
if not self.notplateact:
template = F.relu(template)
if half is not None and bool(half):
template = template.float()
else:
templatein = torch.cat([encoding, viewdirs], dim=1)
if half is not None and bool(half):
templatein = templatein.half()
# primrgb [6, 256, 32, 32, 32, 3] -> [B, 256, primsize, 3]
primrgb = self.rgbdec(templatein, trainiter=trainiter, renderoptions=renderoptions)
primrgb = primrgb * 25. + 100.
if not self.notplateact:
primrgb = F.relu(primrgb)
templatein = encoding
if half is not None and bool(half):
templatein = templatein.half()
primalpha = self.alphadec(templatein, trainiter=trainiter, renderoptions=renderoptions)
if not self.notplateact:
primalpha = F.relu(primalpha)
if trainiter <= self.alphatrainstart:
primalpha = primalpha * 0. + 1.
if algo is not None and int(algo) == 4:
template = torch.cat([primrgb, primalpha], dim=-1)
elif chlast is not None and bool(chlast):
template = torch.cat([primrgb, primalpha], dim=-1)
else:
template = torch.cat([primrgb, primalpha], dim=2)
if half is not None and bool(half):
template = template.float()
if self.warpdec is not None:
warp = self.warpdec(encoding, trainiter=trainiter, renderoptions=renderoptions) * 0.01
warp = warp + torch.stack(torch.meshgrid(
torch.linspace(-1., 1., self.primsize[2], device=encoding.device),
torch.linspace(-1., 1., self.primsize[1], device=encoding.device),
torch.linspace(-1., 1., self.primsize[0], device=encoding.device))[::-1],
dim=-1 if chlast is not None and bool(chlast) else 0)[None, None, :, :, :, :]
else:
warp = None
# debugging / visualization
viewaxes = renderoptions.get("viewaxes")
colorprims = renderoptions.get("colorprims")
viewslab = renderoptions.get("viewslab")
# add axes to primitives
if viewaxes is not None and bool(viewaxes):
template[:, :, 3, template.size(3)//2:template.size(3)//2+1, template.size(4)//2:template.size(4)//2+1, :] = 2550.
template[:, :, 0, template.size(3)//2:template.size(3)//2+1, template.size(4)//2:template.size(4)//2+1, :] = 2550.
template[:, :, 3, template.size(3)//2:template.size(3)//2+1, :, template.size(5)//2:template.size(5)//2+1] = 2550.
template[:, :, 1, template.size(3)//2:template.size(3)//2+1, :, template.size(5)//2:template.size(5)//2+1] = 2550.
template[:, :, 3, :, template.size(4)//2:template.size(4)//2+1, template.size(5)//2:template.size(5)//2+1] = 2550.
template[:, :, 2, :, template.size(4)//2:template.size(4)//2+1, template.size(5)//2:template.size(5)//2+1] = 2550.
# give each primitive a unique color
if colorprims is not None and bool(colorprims):
lightdir = -torch.tensor([1., 1., 1.], device=template.device)
lightdir = lightdir / torch.sqrt(torch.sum(lightdir ** 2))
zz, yy, xx = torch.meshgrid(
torch.linspace(-1., 1., self.primsize[2], device=template.device),
torch.linspace(-1., 1., self.primsize[1], device=template.device),
torch.linspace(-1., 1., self.primsize[0], device=template.device))
primnormalx = torch.where(
(torch.abs(xx) >= torch.abs(yy)) & (torch.abs(xx) >= torch.abs(zz)),
torch.sign(xx) * torch.ones_like(xx),
torch.zeros_like(xx))
primnormaly = torch.where(
(torch.abs(yy) >= torch.abs(xx)) & (torch.abs(yy) >= torch.abs(zz)),
torch.sign(yy) * torch.ones_like(xx),
torch.zeros_like(xx))
primnormalz = torch.where(
(torch.abs(zz) >= torch.abs(xx)) & (torch.abs(zz) >= torch.abs(yy)),
torch.sign(zz) * torch.ones_like(xx),
torch.zeros_like(xx))
primnormal = torch.stack([primnormalx, primnormaly, primnormalz], dim=-1)
primnormal = F.normalize(primnormal, dim=-1)
torch.manual_seed(123456)
gridz, gridy, gridx = torch.meshgrid(
torch.linspace(-1., 1., self.primsize[2], device=encoding.device),
torch.linspace(-1., 1., self.primsize[1], device=encoding.device),
torch.linspace(-1., 1., self.primsize[0], device=encoding.device))
grid = torch.stack([gridx, gridy, gridz], dim=-1)
if chlast is not None and chlast:
template[:] = torch.rand(1, template.size(1), 1, 1, 1, template.size(-1), device=template.device) * 255.
template[:, :, :, :, :, 3] = 1000.
else:
template[:] = torch.rand(1, template.size(1), template.size(2), 1, 1, 1, device=template.device) * 255.
template[:, :, 3, :, :, :] = 1000.
if chlast is not None and chlast:
lightdir0 = torch.sum(primrot[:, :, :, :] * lightdir[None, None, :, None], dim=-2)
template[:, :, :, :, :, :3] *= 1.2 * torch.sum(
lightdir0[:, :, None, None, None, :] * primnormal, dim=-1)[:, :, :, :, :, None].clamp(min=0.05)
else:
lightdir0 = torch.sum(primrot[:, :, :, :] * lightdir[None, None, :, None], dim=-2)
template[:, :, :3, :, :, :] *= 1.2 * torch.sum(
lightdir0[:, :, None, None, None, :] * primnormal, dim=-1)[:, :, None, :, :, :].clamp(min=0.05)
# view slab as a 2d grid
if viewslab is not None and bool(viewslab):
assert evaliter is not None
yy, xx = torch.meshgrid(
torch.linspace(0., 1., int(math.sqrt(self.nprims)), device=template.device),
torch.linspace(0., 1., int(math.sqrt(self.nprims)), device=template.device))
primpos0 = torch.stack([xx*1.5, 0.75-yy*1.5, xx*0.+0.5], dim=-1)[None, :, :, :].repeat(template.size(0), 1, 1, 1).view(-1, self.nprims, 3)
primrot0 = torch.eye(3, device=template.device)[None, None, :, :].repeat(template.size(0), self.nprims, 1, 1)
primrot0.data[:, :, 1, 1] *= -1.
primscale0 = torch.ones((template.size(0), self.nprims, 3), device=template.device) * math.sqrt(self.nprims) * 1.25 #* 0.5
blend = ((evaliter - 256.) / 64.).clamp(min=0., max=1.)[:, None, None]
blend = 3 * blend ** 2 - 2 * blend ** 3
primpos = (1. - blend) * primpos0 + blend * primpos
primrot = models.utils.rotation_interp(primrot0, primrot, blend)
primscale = torch.exp((1. - blend) * torch.log(primscale0) + blend * torch.log(primscale))
losses = {}
# prior on primitive volume
if "primvolsum" in losslist:
losses["primvolsum"] = torch.sum(torch.prod(1. / primscale, dim=-1), dim=-1)
if "logprimscalevar" in losslist:
logprimscale = torch.log(primscale)
logprimscalemean = torch.mean(logprimscale, dim=1, keepdim=True)
losses["logprimscalevar"] = torch.mean((logprimscale - logprimscalemean) ** 2)
result = {
"template": template,
"primpos": primpos,
"primrot": primrot,
"primscale": primscale}
if primtransf is not None:
result["primtransf"] = primtransf
if warp is not None:
result["warp"] = warp
if geo is not None:
result["verts"] = geo
return result, losses