|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
|
|
import torch |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from xformers.ops import memory_efficient_attention, unbind |
|
|
|
|
|
class MemEffAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
proj_bias: bool = True, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
gradient_checkpointing: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim, bias=proj_bias) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor: |
|
if self.training and self.gradient_checkpointing: |
|
return checkpoint(self._forward, x, attn_bias, use_reentrant=False) |
|
else: |
|
return self._forward(x, attn_bias) |
|
|
|
def _forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
|
|
q, k, v = unbind(qkv, 2) |
|
|
|
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) |
|
x = x.reshape([B, N, C]) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class MemEffCrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_q: int, |
|
dim_k: int, |
|
dim_v: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
proj_bias: bool = True, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
gradient_checkpointing: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
|
self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias) |
|
self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias) |
|
self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim, bias=proj_bias) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_bias=None) -> torch.Tensor: |
|
if self.training and self.gradient_checkpointing: |
|
return checkpoint(self._forward, q, k, v, attn_bias, use_reentrant=False) |
|
else: |
|
return self._forward(q, k, v, attn_bias) |
|
|
|
def _forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_bias=None) -> torch.Tensor: |
|
|
|
|
|
|
|
|
|
|
|
B, N, _ = q.shape |
|
M = k.shape[1] |
|
|
|
q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads) |
|
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads) |
|
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads) |
|
|
|
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) |
|
x = x.reshape(B, N, -1) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |