|
import torch |
|
import numpy as np |
|
from .typing import * |
|
|
|
|
|
def dot(x: Union[Tensor, ndarray], y: Union[Tensor, ndarray]) -> Union[Tensor, ndarray]: |
|
"""dot product (along the last dim). |
|
|
|
Args: |
|
x (Union[Tensor, ndarray]): x, [..., C] |
|
y (Union[Tensor, ndarray]): y, [..., C] |
|
|
|
Returns: |
|
Union[Tensor, ndarray]: x dot y, [..., 1] |
|
""" |
|
if isinstance(x, np.ndarray): |
|
return np.sum(x * y, -1, keepdims=True) |
|
else: |
|
return torch.sum(x * y, -1, keepdim=True) |
|
|
|
def length(x: Union[Tensor, ndarray], eps=1e-20) -> Union[Tensor, ndarray]: |
|
"""length of an array (along the last dim). |
|
|
|
Args: |
|
x (Union[Tensor, ndarray]): x, [..., C] |
|
eps (float, optional): eps. Defaults to 1e-20. |
|
|
|
Returns: |
|
Union[Tensor, ndarray]: length, [..., 1] |
|
""" |
|
if isinstance(x, np.ndarray): |
|
return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps)) |
|
else: |
|
return torch.sqrt(torch.clamp(dot(x, x), min=eps)) |
|
|
|
def safe_normalize(x: Union[Tensor, ndarray], eps=1e-20) -> Union[Tensor, ndarray]: |
|
"""normalize an array (along the last dim). |
|
|
|
Args: |
|
x (Union[Tensor, ndarray]): x, [..., C] |
|
eps (float, optional): eps. Defaults to 1e-20. |
|
|
|
Returns: |
|
Union[Tensor, ndarray]: normalized x, [..., C] |
|
""" |
|
|
|
return x / length(x, eps) |