|
|
|
|
|
|
|
|
|
|
|
|
|
import torch as th |
|
import torch.nn as nn |
|
from torchvision.models import vgg19 |
|
import torch.nn.functional as F |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class Vgg19(nn.Module): |
|
def __init__(self, requires_grad=False): |
|
super(Vgg19, self).__init__() |
|
vgg19_network = vgg19(pretrained=True) |
|
|
|
vgg_pretrained_features = vgg19_network.features |
|
self.slice1 = nn.Sequential() |
|
self.slice2 = nn.Sequential() |
|
self.slice3 = nn.Sequential() |
|
self.slice4 = nn.Sequential() |
|
self.slice5 = nn.Sequential() |
|
for x in range(2): |
|
self.slice1.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(2, 7): |
|
self.slice2.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(7, 12): |
|
self.slice3.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(12, 21): |
|
self.slice4.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(21, 30): |
|
self.slice5.add_module(str(x), vgg_pretrained_features[x]) |
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h_relu1 = self.slice1(X) |
|
h_relu2 = self.slice2(h_relu1) |
|
h_relu3 = self.slice3(h_relu2) |
|
h_relu4 = self.slice4(h_relu3) |
|
h_relu5 = self.slice5(h_relu4) |
|
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] |
|
return out |
|
|
|
|
|
class VGGLossMasked(nn.Module): |
|
def __init__(self, weights=None): |
|
super().__init__() |
|
self.vgg = Vgg19() |
|
if weights is None: |
|
|
|
self.weights = [20.0, 5.0, 0.9, 0.5, 0.5] |
|
else: |
|
self.weights = weights |
|
|
|
def normalize(self, batch): |
|
mean = batch.new_tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) |
|
std = batch.new_tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) |
|
return ((batch / 255.0).clamp(0.0, 1.0) - mean) / std |
|
|
|
def forward(self, x_rgb, y_rgb, mask): |
|
|
|
x_norm = self.normalize(x_rgb) |
|
y_norm = self.normalize(y_rgb) |
|
|
|
x_vgg = self.vgg(x_norm) |
|
y_vgg = self.vgg(y_norm) |
|
loss = 0 |
|
for i in range(len(x_vgg)): |
|
if isinstance(mask, th.Tensor): |
|
m = F.interpolate( |
|
mask, size=(x_vgg[i].shape[-2], x_vgg[i].shape[-1]), mode="bilinear" |
|
).detach() |
|
else: |
|
m = mask |
|
|
|
vx = x_vgg[i] * m |
|
vy = y_vgg[i] * m |
|
|
|
loss += self.weights[i] * (vx - vy).abs().mean() |
|
|
|
|
|
|
|
|
|
return loss |
|
|