File size: 11,309 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Neural Volumes decoder """
import math
from typing import Optional, Dict, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import models.utils
from models.utils import LinearELR, ConvTranspose2dELR, ConvTranspose3dELR
class Reshape(nn.Module):
def __init__(self, *args):
super(Reshape, self).__init__()
self.shape = args
def forward(self, x):
return x.view(self.shape)
class ContentDecoder(nn.Module):
def __init__(self, primsize, inch, outch, chstart=256, hstart=4,
texwarp=False, elr=True, norm=None, mod=False, ub=True, upconv=None,
penultch=None):
super(ContentDecoder, self).__init__()
assert not texwarp
assert upconv == None
self.primsize = primsize
nlayers = int(math.log2(self.primsize / hstart))
lastch = chstart
dims = (hstart, hstart, hstart)
layers = []
layers.append(LinearELR(inch, chstart*dims[0]*dims[1]*dims[2], act=nn.LeakyReLU(0.2)))
layers.append(Reshape(-1, chstart, dims[0], dims[1], dims[2]))
for i in range(nlayers):
nextch = lastch if i % 2 == 0 else lastch // 2
if i == nlayers - 2 and penultch is not None:
nextch = penultch
layers.append(ConvTranspose3dELR(
lastch,
(outch if i == nlayers - 1 else nextch),
4, 2, 1,
ub=(dims[0]*2, dims[1]*2, dims[2]*2) if ub else None,
norm=None if i == nlayers - 1 else norm,
act=None if i == nlayers - 1 else nn.LeakyReLU(0.2)
))
lastch = nextch
dims = (dims[0] * 2, dims[1] * 2, dims[2] * 2)
self.mod = nn.Sequential(*layers)
def forward(self, enc, renderoptions : Dict[str, str], trainiter : Optional[int]=None):
x = self.mod(enc)
algo = renderoptions.get("algo")
chlast = renderoptions.get("chlast")
if chlast is not None and bool(chlast):
# reorder channels last
outch = x.size(1)
x = x.permute(0, 2, 3, 4, 1)[:, None, :, :, :, :].contiguous()
else:
outch = x.size(1)
x = x[:, None, :, :, :, :].contiguous()
return x
def get_dec(dectype, **kwargs):
if dectype == "conv":
return ContentDecoder(**kwargs)
else:
raise
class Decoder(nn.Module):
def __init__(self,
volradius,
dectype="conv",
primsize=128,
chstart=256,
penultch=None,
condsize=0,
warptype="conv",
warpprimsize=32,
sharedrgba=False,
norm=None,
mod=False,
elr=True,
notplateact=False,
postrainstart=-1,
alphatrainstart=-1,
renderoptions={},
**kwargs):
"""
Parameters
----------
volradius : float
radius of bounding volume of scene
dectype : string
type of content decoder, options are "slab2d", "slab2d3d", "slab2d3dv2"
primsize : Tuple[int, int, int]
size of primitive dimensions
postrainstart : int
training iterations to start learning position, rotation, and
scaling (i.e., primitives stay frozen until this iteration number)
condsize : int
unused
motiontype : string
motion model, options are "linear" and "deconv"
warptype : string
warp model, options are "same" to use same architecture as content
or None
sharedrgba : bool
True to use 1 branch to output rgba, False to use 1 branch for rgb
and 1 branch for alpha
"""
super(Decoder, self).__init__()
self.volradius = volradius
self.postrainstart = postrainstart
self.alphatrainstart = alphatrainstart
self.primsize = primsize
self.warpprimsize = warpprimsize
self.notplateact = notplateact
self.enc = LinearELR(256 + condsize, 256)
# slab decoder (RGBA)
if sharedrgba:
self.rgbadec = get_dec(dectype, primsize=primsize,
inch=256+3, outch=4, norm=norm, mod=mod, elr=elr,
penultch=penultch, **kwargs)
if renderoptions.get("half", False):
self.rgbadec = self.rgbadec.half()
if renderoptions.get("chlastconv", False):
self.rgbadec = self.rgbadec.to(memory_format=torch.channels_last)
else:
self.rgbdec = get_dec(dectype, primsize=primsize,
inch=256+3, outch=3, chstart=chstart, norm=norm, mod=mod,
elr=elr, penultch=penultch, **kwargs)
self.alphadec = get_dec(dectype, primsize=primsize,
inch=256, outch=1, chstart=chstart, norm=norm, mod=mod,
elr=elr, penultch=penultch, **kwargs)
self.rgbadec = None
if renderoptions.get("half", False):
self.rgbdec = self.rgbdec.half()
self.alphadec = self.alphadec.half()
if renderoptions.get("chlastconv", False):
self.rgbdec = self.rgbdec.to(memory_format=torch.channels_last)
self.alphadec = self.alphadec.to(memory_format=torch.channels_last)
# warp field decoder
if warptype is not None:
self.warpdec = get_dec(warptype, primsize=warpprimsize,
inch=256, outch=3, chstart=chstart, norm=norm, mod=mod, elr=elr, **kwargs)
else:
self.warpdec = None
def forward(self,
encoding,
viewpos,
condinput : Optional[torch.Tensor]=None,
renderoptions : Optional[Dict[str, str]]=None,
trainiter : int=-1,
evaliter : Optional[torch.Tensor]=None,
losslist : Optional[List[str]]=None,
modelmatrix : Optional[torch.Tensor]=None):
"""
Parameters
----------
encoding : torch.Tensor [B, 256]
Encoding of current frame
viewpos : torch.Tensor [B, 3]
Viewing position of target camera view
condinput : torch.Tensor [B, ?]
Additional conditioning input (e.g., headpose)
renderoptions : dict
Options for rendering (e.g., rendering debug images)
trainiter : int,
Current training iteration
losslist : list,
List of losses to compute and return
Returns
-------
result : dict,
Contains predicted vertex positions, primitive contents and
locations, scaling, and orientation, and any losses.
"""
assert renderoptions is not None
assert losslist is not None
if condinput is not None:
encoding = torch.cat([encoding, condinput], dim=1)
encoding = self.enc(encoding)
viewdirs = F.normalize(viewpos, dim=1)
primpos = torch.zeros(encoding.size(0), 1, 3, device=encoding.device)
primrot = torch.eye(3, device=encoding.device)[None, None, :, :].repeat(encoding.size(0), 1, 1, 1)
primscale = torch.ones(encoding.size(0), 1, 3, device=encoding.device)
# options
algo = renderoptions.get("algo")
chlast = renderoptions.get("chlast")
half = renderoptions.get("half")
if self.rgbadec is not None:
# shared rgb and alpha branch
scale = torch.tensor([25., 25., 25., 1.], device=encoding.device)
bias = torch.tensor([100., 100., 100., 0.], device=encoding.device)
if chlast is not None and bool(chlast):
scale = scale[None, None, None, None, None, :]
bias = bias[None, None, None, None, None, :]
else:
scale = scale[None, None, :, None, None, None]
bias = bias[None, None, :, None, None, None]
templatein = torch.cat([encoding, viewdirs], dim=1)
if half is not None and bool(half):
templatein = templatein.half()
template = self.rgbadec(templatein, trainiter=trainiter, renderoptions=renderoptions)
template = bias + scale * template
if not self.notplateact:
template = F.relu(template)
if half is not None and bool(half):
template = template.float()
else:
templatein = torch.cat([encoding, viewdirs], dim=1)
if half is not None and bool(half):
templatein = templatein.half()
primrgb = self.rgbdec(templatein, trainiter=trainiter, renderoptions=renderoptions)
primrgb = primrgb * 25. + 100.
if not self.notplateact:
primrgb = F.relu(primrgb)
templatein = encoding
if half is not None and bool(half):
templatein = templatein.half()
primalpha = self.alphadec(templatein, trainiter=trainiter, renderoptions=renderoptions)
if not self.notplateact:
primalpha = F.relu(primalpha)
if trainiter <= self.alphatrainstart:
primalpha = primalpha * 0. + 1.
if algo is not None and int(algo) == 4:
template = torch.cat([primrgb, primalpha], dim=-1)
elif chlast is not None and bool(chlast):
template = torch.cat([primrgb, primalpha], dim=-1)
else:
template = torch.cat([primrgb, primalpha], dim=2)
if half is not None and bool(half):
template = template.float()
if self.warpdec is not None:
warp = self.warpdec(encoding, trainiter=trainiter, renderoptions=renderoptions) * 0.01
warp = warp + torch.stack(torch.meshgrid(
torch.linspace(-1., 1., self.warpprimsize, device=encoding.device),
torch.linspace(-1., 1., self.warpprimsize, device=encoding.device),
torch.linspace(-1., 1., self.warpprimsize, device=encoding.device))[::-1],
dim=-1 if chlast is not None and bool(chlast) else 0)[None, None, :, :, :, :]
warp = warp.contiguous()
else:
warp = None
losses = {}
# prior on primitive volume
if "primvolsum" in losslist:
losses["primvolsum"] = torch.sum(torch.prod(1. / primscale, dim=-1), dim=-1)
if "logprimscalevar" in losslist:
logprimscale = torch.log(primscale)
logprimscalemean = torch.mean(logprimscale, dim=1, keepdim=True)
losses["logprimscalevar"] = torch.mean((logprimscale - logprimscalemean) ** 2)
result = {
"template": template,
"primpos": primpos,
"primrot": primrot,
"primscale": primscale}
if warp is not None:
result["warp"] = warp
return result, losses
|