File size: 6,119 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the license found in the
// LICENSE file in the root directory of this source tree.
#include <cassert>
#include <functional>
#include <map>
#include <tuple>
#include <vector>
#include "helper_math.h"
__global__ void compute_raydirs_forward_kernel(
int N, int H, int W,
float3 * viewposim,
float3 * viewrotim,
float2 * focalim,
float2 * princptim,
float2 * pixelcoordsim,
float volradius,
float3 * rayposim,
float3 * raydirim,
float2 * tminmaxim
) {
bool validthread = false;
int w, h, n;
w = blockIdx.x * blockDim.x + threadIdx.x;
h = (blockIdx.y * blockDim.y + threadIdx.y)%H;
n = (blockIdx.y * blockDim.y + threadIdx.y)/H;
validthread = (w < W) && (h < H) && (n<N);
if (validthread) {
float3 raypos = viewposim[n] / volradius;
float3 viewrot0 = viewrotim[n * 3 + 0];
float3 viewrot1 = viewrotim[n * 3 + 1];
float3 viewrot2 = viewrotim[n * 3 + 2];
float2 pixelcoord = pixelcoordsim ? pixelcoordsim[n * H * W + h * W + w] : make_float2(w, h);
pixelcoord = (pixelcoord - princptim[n]) / focalim[n];
float3 raydir = make_float3(pixelcoord, 1.f);
raydir = viewrot0 * raydir.x + viewrot1 * raydir.y + viewrot2 * raydir.z;
raydir = normalize(raydir);
float3 t1 = (-1.f - raypos) / raydir;
float3 t2 = ( 1.f - raypos) / raydir;
float tmin = fmaxf(fminf(t1.x, t2.x), fmaxf(fminf(t1.y, t2.y), fminf(t1.z, t2.z)));
float tmax = fminf(fmaxf(t1.x, t2.x), fminf(fmaxf(t1.y, t2.y), fmaxf(t1.z, t2.z)));
float2 tminmax = make_float2(fmaxf(tmin, 0.f), tmax);
rayposim[n * H * W + h * W + w] = raypos;
raydirim[n * H * W + h * W + w] = raydir;
tminmaxim[n * H * W + h * W + w] = tminmax;
}
}
__global__ void compute_raydirs_backward_kernel(
int N, int H, int W,
float3 * viewposim,
float3 * viewrotim,
float2 * focalim,
float2 * princptim,
float2 * pixelcoordsim,
float volradius,
float3 * rayposim,
float3 * raydirim,
float2 * tminmaxim,
float3 * grad_viewposim,
float3 * grad_viewrotim,
float2 * grad_focalim,
float2 * grad_princptim
) {
bool validthread = false;
int w, h, n;
w = blockIdx.x * blockDim.x + threadIdx.x;
h = (blockIdx.y * blockDim.y + threadIdx.y)%H;
n = (blockIdx.y * blockDim.y + threadIdx.y)/H;
validthread = (w < W) && (h < H) && (n<N);
if (validthread) {
float3 raypos = viewposim[n] / volradius;
float3 viewrot0 = viewrotim[n * 3 + 0];
float3 viewrot1 = viewrotim[n * 3 + 1];
float3 viewrot2 = viewrotim[n * 3 + 2];
float2 pixelcoord = pixelcoordsim ? pixelcoordsim[n * H * W + h * W + w] : make_float2(w, h);
pixelcoord = (pixelcoord - princptim[n]) / focalim[n];
float3 raydir = make_float3(pixelcoord, 1.f);
raydir = viewrot0 * raydir.x + viewrot1 * raydir.y + viewrot2 * raydir.z;
raydir = normalize(raydir);
float3 t1 = (-1.f - raypos) / raydir;
float3 t2 = ( 1.f - raypos) / raydir;
float tmin = fmaxf(fminf(t1.x, t2.x), fmaxf(fminf(t1.y, t2.y), fminf(t1.z, t2.z)));
float tmax = fminf(fmaxf(t1.x, t2.x), fminf(fmaxf(t1.y, t2.y), fmaxf(t1.z, t2.z)));
float2 tminmax = make_float2(fmaxf(tmin, 0.f), tmax);
}
}
void compute_raydirs_forward_cuda(
int N, int H, int W,
float * viewposim,
float * viewrotim,
float * focalim,
float * princptim,
float * pixelcoordsim,
float volradius,
float * rayposim,
float * raydirim,
float * tminmaxim,
cudaStream_t stream) {
int blocksizex = 16;
int blocksizey = 16;
dim3 blocksize(blocksizex, blocksizey);
dim3 gridsize;
gridsize = dim3(
(W + blocksize.x - 1) / blocksize.x,
(N*H + blocksize.y - 1) / blocksize.y);
auto fn = compute_raydirs_forward_kernel;
fn<<<gridsize, blocksize, 0, stream>>>(
N, H, W,
reinterpret_cast<float3 *>(viewposim),
reinterpret_cast<float3 *>(viewrotim),
reinterpret_cast<float2 *>(focalim),
reinterpret_cast<float2 *>(princptim),
reinterpret_cast<float2 *>(pixelcoordsim),
volradius,
reinterpret_cast<float3 *>(rayposim),
reinterpret_cast<float3 *>(raydirim),
reinterpret_cast<float2 *>(tminmaxim));
}
void compute_raydirs_backward_cuda(
int N, int H, int W,
float * viewposim,
float * viewrotim,
float * focalim,
float * princptim,
float * pixelcoordsim,
float volradius,
float * rayposim,
float * raydirim,
float * tminmaxim,
float * grad_viewposim,
float * grad_viewrotim,
float * grad_focalim,
float * grad_princptim,
cudaStream_t stream) {
int blocksizex = 16;
int blocksizey = 16;
dim3 blocksize(blocksizex, blocksizey);
dim3 gridsize;
gridsize = dim3(
(W + blocksize.x - 1) / blocksize.x,
(N*H + blocksize.y - 1) / blocksize.y);
auto fn = compute_raydirs_backward_kernel;
fn<<<gridsize, blocksize, 0, stream>>>(
N, H, W,
reinterpret_cast<float3 *>(viewposim),
reinterpret_cast<float3 *>(viewrotim),
reinterpret_cast<float2 *>(focalim),
reinterpret_cast<float2 *>(princptim),
reinterpret_cast<float2 *>(pixelcoordsim),
volradius,
reinterpret_cast<float3 *>(rayposim),
reinterpret_cast<float3 *>(raydirim),
reinterpret_cast<float2 *>(tminmaxim),
reinterpret_cast<float3 *>(grad_viewposim),
reinterpret_cast<float3 *>(grad_viewrotim),
reinterpret_cast<float2 *>(grad_focalim),
reinterpret_cast<float2 *>(grad_princptim));
}
|