File size: 34,411 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the license found in the
// LICENSE file in the root directory of this source tree.
#ifndef MVPRAYMARCHER_UTILS_H_
#define MVPRAYMARCHER_UTILS_H_
#include <cassert>
#include <cmath>
#include <limits>
#include "helper_math.h"
static __forceinline__ __device__ float clock_diff(long long int end, long long int start) {
long long int max_clock = std::numeric_limits<long long int>::max();
return (end<start? (end + float(max_clock-start)) : float(end-start));
}
static __forceinline__ __device__
bool allgt(float3 a, float3 b) {
return a.x >= b.x && a.y >= b.y && a.z >= b.z;
}
static __forceinline__ __device__
bool alllt(float3 a, float3 b) {
return a.x <= b.x && a.y <= b.y && a.z <= b.z;
}
static __forceinline__ __device__
float4 softplus(float4 x) {
return make_float4(
x.x > 20.f ? x.x : logf(1.f + expf(x.x)),
x.y > 20.f ? x.y : logf(1.f + expf(x.y)),
x.z > 20.f ? x.z : logf(1.f + expf(x.z)),
x.w > 20.f ? x.w : logf(1.f + expf(x.w)));
}
static __forceinline__ __device__
float softplus(float x) {
// that's a neat trick
return __logf(1.f + __expf(-abs(x))) + max(x, 0.f);
}
static __forceinline__ __device__
float softplus_grad(float x) {
// that's a neat trick
float expnabsx = __expf(-abs(x));
return (0.5f - expnabsx / (1.f + expnabsx)) * copysign(1.f, x) + 0.5f;
}
static __forceinline__ __device__
float4 sigmoid(float4 x) {
return make_float4(
1.f / (1.f + expf(-x.x)),
1.f / (1.f + expf(-x.y)),
1.f / (1.f + expf(-x.z)),
1.f / (1.f + expf(-x.w)));
}
// perform reduction on warp, then call atomicAdd for only one lane
static __forceinline__ __device__ void fastAtomicAdd(float * ptr, float val) {
for (int offset = 16; offset > 0; offset /= 2) {
val += __shfl_down_sync(0xffffffff, val, offset);
}
const int laneid = (threadIdx.y * blockDim.x + threadIdx.x) % 32;
if (laneid == 0) {
atomicAdd(ptr, val);
}
}
static __forceinline__ __device__
bool within_bounds_3d(int d, int h, int w, int D, int H, int W) {
return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
}
static __forceinline__ __device__
void safe_add_3d(float *data, int d, int h, int w,
int sD, int sH, int sW, int D, int H, int W,
float delta) {
if (within_bounds_3d(d, h, w, D, H, W)) {
atomicAdd(data + d * sD + h * sH + w * sW, delta);
}
}
static __forceinline__ __device__
void safe_add_3d(float3 *data, int d, int h, int w,
int sD, int sH, int sW, int D, int H, int W,
float3 delta) {
if (within_bounds_3d(d, h, w, D, H, W)) {
atomicAdd((float*)data + (d * sD + h * sH + w * sW) * 3 + 0, delta.x);
atomicAdd((float*)data + (d * sD + h * sH + w * sW) * 3 + 1, delta.y);
atomicAdd((float*)data + (d * sD + h * sH + w * sW) * 3 + 2, delta.z);
}
}
static __forceinline__ __device__
void safe_add_3d(float4 *data, int d, int h, int w,
int sD, int sH, int sW, int D, int H, int W,
float4 delta) {
if (within_bounds_3d(d, h, w, D, H, W)) {
atomicAdd((float*)data + (d * sD + h * sH + w * sW) * 4 + 0, delta.x);
atomicAdd((float*)data + (d * sD + h * sH + w * sW) * 4 + 1, delta.y);
atomicAdd((float*)data + (d * sD + h * sH + w * sW) * 4 + 2, delta.z);
atomicAdd((float*)data + (d * sD + h * sH + w * sW) * 4 + 3, delta.w);
}
}
static __forceinline__ __device__
float clip_coordinates(float in, int clip_limit) {
return ::min(static_cast<float>(clip_limit - 1), ::max(in, 0.f));
}
template <typename scalar_t>
static __forceinline__ __device__
float clip_coordinates_set_grad(float in, int clip_limit, scalar_t *grad_in) {
if (in < 0.f) {
*grad_in = static_cast<scalar_t>(0);
return 0.f;
} else {
float max = static_cast<float>(clip_limit - 1);
if (in > max) {
*grad_in = static_cast<scalar_t>(0);
return max;
} else {
*grad_in = static_cast<scalar_t>(1);
return in;
}
}
}
template<typename out_t>
static __device__ out_t grid_sample_forward(int C, int inp_D, int inp_H,
int inp_W, float* vals, float3 pos, bool border) {
int inp_sW = 1, inp_sH = inp_W, inp_sD = inp_W * inp_H, inp_sC = inp_W * inp_H * inp_D;
int out_sC = 1;
// normalize ix, iy, iz from [-1, 1] to [0, inp_W-1] & [0, inp_H-1] & [0, inp_D-1]
float ix = max(-10.f, min(10.f, ((pos.x + 1.f) * 0.5f))) * (inp_W - 1);
float iy = max(-10.f, min(10.f, ((pos.y + 1.f) * 0.5f))) * (inp_H - 1);
float iz = max(-10.f, min(10.f, ((pos.z + 1.f) * 0.5f))) * (inp_D - 1);
if (border) {
// clip coordinates to image borders
ix = clip_coordinates(ix, inp_W);
iy = clip_coordinates(iy, inp_H);
iz = clip_coordinates(iz, inp_D);
}
// get corner pixel values from (x, y, z)
// for 4d, we used north-east-south-west
// for 5d, we add top-bottom
int ix_tnw = static_cast<int>(::floor(ix));
int iy_tnw = static_cast<int>(::floor(iy));
int iz_tnw = static_cast<int>(::floor(iz));
int ix_tne = ix_tnw + 1;
int iy_tne = iy_tnw;
int iz_tne = iz_tnw;
int ix_tsw = ix_tnw;
int iy_tsw = iy_tnw + 1;
int iz_tsw = iz_tnw;
int ix_tse = ix_tnw + 1;
int iy_tse = iy_tnw + 1;
int iz_tse = iz_tnw;
int ix_bnw = ix_tnw;
int iy_bnw = iy_tnw;
int iz_bnw = iz_tnw + 1;
int ix_bne = ix_tnw + 1;
int iy_bne = iy_tnw;
int iz_bne = iz_tnw + 1;
int ix_bsw = ix_tnw;
int iy_bsw = iy_tnw + 1;
int iz_bsw = iz_tnw + 1;
int ix_bse = ix_tnw + 1;
int iy_bse = iy_tnw + 1;
int iz_bse = iz_tnw + 1;
// get surfaces to each neighbor:
float tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
float tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
float tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
float tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
float bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
float bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
float bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
float bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);
out_t result;
//auto inp_ptr_NC = input.data + n * inp_sN;
//auto out_ptr_NCDHW = output.data + n * out_sN + d * out_sD + h * out_sH + w * out_sW;
float * inp_ptr_NC = vals;
float * out_ptr_NCDHW = &result.x;
for (int c = 0; c < C; ++c, inp_ptr_NC += inp_sC, out_ptr_NCDHW += out_sC) {
// (c, iz_tnw, iy_tnw, ix_tnw) * tnw + (c, iz_tne, iy_tne, ix_tne) * tne
// + (c, iz_tsw, iy_tsw, ix_tsw) * tsw + (c, iz_tse, iy_tse, ix_tse) * tse
// + (c, iz_bnw, iy_bnw, ix_bnw) * bnw + (c, iz_bne, iy_bne, ix_bne) * bne
// + (c, iz_bsw, iy_bsw, ix_bsw) * bsw + (c, iz_bse, iy_bse, ix_bse) * bse
*out_ptr_NCDHW = static_cast<float>(0);
if (within_bounds_3d(iz_tnw, iy_tnw, ix_tnw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW] * tnw;
}
if (within_bounds_3d(iz_tne, iy_tne, ix_tne, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW] * tne;
}
if (within_bounds_3d(iz_tsw, iy_tsw, ix_tsw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW] * tsw;
}
if (within_bounds_3d(iz_tse, iy_tse, ix_tse, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW] * tse;
}
if (within_bounds_3d(iz_bnw, iy_bnw, ix_bnw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW] * bnw;
}
if (within_bounds_3d(iz_bne, iy_bne, ix_bne, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW] * bne;
}
if (within_bounds_3d(iz_bsw, iy_bsw, ix_bsw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW] * bsw;
}
if (within_bounds_3d(iz_bse, iy_bse, ix_bse, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW] * bse;
}
}
return result;
}
template<typename out_t>
static __device__ float3 grid_sample_backward(int C, int inp_D, int inp_H,
int inp_W, float* vals, float* grad_vals, float3 pos, out_t grad_out,
bool border) {
int inp_sW = 1, inp_sH = inp_W, inp_sD = inp_W * inp_H, inp_sC = inp_W * inp_H * inp_D;
int gInp_sW = 1, gInp_sH = inp_W, gInp_sD = inp_W * inp_H, gInp_sC = inp_W * inp_H * inp_D;
int gOut_sC = 1;
// normalize ix, iy, iz from [-1, 1] to [0, inp_W-1] & [0, inp_H-1] & [0, inp_D-1]
float ix = max(-10.f, min(10.f, ((pos.x + 1.f) * 0.5f))) * (inp_W - 1);
float iy = max(-10.f, min(10.f, ((pos.y + 1.f) * 0.5f))) * (inp_H - 1);
float iz = max(-10.f, min(10.f, ((pos.z + 1.f) * 0.5f))) * (inp_D - 1);
float gix_mult = (inp_W - 1.f) / 2;
float giy_mult = (inp_H - 1.f) / 2;
float giz_mult = (inp_D - 1.f) / 2;
if (border) {
// clip coordinates to image borders
ix = clip_coordinates_set_grad(ix, inp_W, &gix_mult);
iy = clip_coordinates_set_grad(iy, inp_H, &giy_mult);
iz = clip_coordinates_set_grad(iz, inp_D, &giz_mult);
}
// get corner pixel values from (x, y, z)
// for 4d, we used north-east-south-west
// for 5d, we add top-bottom
int ix_tnw = static_cast<int>(::floor(ix));
int iy_tnw = static_cast<int>(::floor(iy));
int iz_tnw = static_cast<int>(::floor(iz));
int ix_tne = ix_tnw + 1;
int iy_tne = iy_tnw;
int iz_tne = iz_tnw;
int ix_tsw = ix_tnw;
int iy_tsw = iy_tnw + 1;
int iz_tsw = iz_tnw;
int ix_tse = ix_tnw + 1;
int iy_tse = iy_tnw + 1;
int iz_tse = iz_tnw;
int ix_bnw = ix_tnw;
int iy_bnw = iy_tnw;
int iz_bnw = iz_tnw + 1;
int ix_bne = ix_tnw + 1;
int iy_bne = iy_tnw;
int iz_bne = iz_tnw + 1;
int ix_bsw = ix_tnw;
int iy_bsw = iy_tnw + 1;
int iz_bsw = iz_tnw + 1;
int ix_bse = ix_tnw + 1;
int iy_bse = iy_tnw + 1;
int iz_bse = iz_tnw + 1;
// get surfaces to each neighbor:
float tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
float tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
float tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
float tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
float bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
float bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
float bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
float bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);
float gix = static_cast<float>(0), giy = static_cast<float>(0), giz = static_cast<float>(0);
//float *gOut_ptr_NCDHW = grad_output.data + n * gOut_sN + d * gOut_sD + h * gOut_sH + w * gOut_sW;
//float *gInp_ptr_NC = grad_input.data + n * gInp_sN;
//float *inp_ptr_NC = input.data + n * inp_sN;
float *gOut_ptr_NCDHW = &grad_out.x;
float *gInp_ptr_NC = grad_vals;
float *inp_ptr_NC = vals;
// calculate bilinear weighted pixel value and set output pixel
for (int c = 0; c < C; ++c, gOut_ptr_NCDHW += gOut_sC, gInp_ptr_NC += gInp_sC, inp_ptr_NC += inp_sC) {
float gOut = *gOut_ptr_NCDHW;
// calculate and set grad_input
safe_add_3d(gInp_ptr_NC, iz_tnw, iy_tnw, ix_tnw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tnw * gOut);
safe_add_3d(gInp_ptr_NC, iz_tne, iy_tne, ix_tne, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tne * gOut);
safe_add_3d(gInp_ptr_NC, iz_tsw, iy_tsw, ix_tsw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tsw * gOut);
safe_add_3d(gInp_ptr_NC, iz_tse, iy_tse, ix_tse, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tse * gOut);
safe_add_3d(gInp_ptr_NC, iz_bnw, iy_bnw, ix_bnw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bnw * gOut);
safe_add_3d(gInp_ptr_NC, iz_bne, iy_bne, ix_bne, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bne * gOut);
safe_add_3d(gInp_ptr_NC, iz_bsw, iy_bsw, ix_bsw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bsw * gOut);
safe_add_3d(gInp_ptr_NC, iz_bse, iy_bse, ix_bse, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bse * gOut);
// calculate grad_grid
if (within_bounds_3d(iz_tnw, iy_tnw, ix_tnw, inp_D, inp_H, inp_W)) {
float tnw_val = inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW];
gix -= tnw_val * (iy_bse - iy) * (iz_bse - iz) * gOut;
giy -= tnw_val * (ix_bse - ix) * (iz_bse - iz) * gOut;
giz -= tnw_val * (ix_bse - ix) * (iy_bse - iy) * gOut;
}
if (within_bounds_3d(iz_tne, iy_tne, ix_tne, inp_D, inp_H, inp_W)) {
float tne_val = inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW];
gix += tne_val * (iy_bsw - iy) * (iz_bsw - iz) * gOut;
giy -= tne_val * (ix - ix_bsw) * (iz_bsw - iz) * gOut;
giz -= tne_val * (ix - ix_bsw) * (iy_bsw - iy) * gOut;
}
if (within_bounds_3d(iz_tsw, iy_tsw, ix_tsw, inp_D, inp_H, inp_W)) {
float tsw_val = inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW];
gix -= tsw_val * (iy - iy_bne) * (iz_bne - iz) * gOut;
giy += tsw_val * (ix_bne - ix) * (iz_bne - iz) * gOut;
giz -= tsw_val * (ix_bne - ix) * (iy - iy_bne) * gOut;
}
if (within_bounds_3d(iz_tse, iy_tse, ix_tse, inp_D, inp_H, inp_W)) {
float tse_val = inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW];
gix += tse_val * (iy - iy_bnw) * (iz_bnw - iz) * gOut;
giy += tse_val * (ix - ix_bnw) * (iz_bnw - iz) * gOut;
giz -= tse_val * (ix - ix_bnw) * (iy - iy_bnw) * gOut;
}
if (within_bounds_3d(iz_bnw, iy_bnw, ix_bnw, inp_D, inp_H, inp_W)) {
float bnw_val = inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW];
gix -= bnw_val * (iy_tse - iy) * (iz - iz_tse) * gOut;
giy -= bnw_val * (ix_tse - ix) * (iz - iz_tse) * gOut;
giz += bnw_val * (ix_tse - ix) * (iy_tse - iy) * gOut;
}
if (within_bounds_3d(iz_bne, iy_bne, ix_bne, inp_D, inp_H, inp_W)) {
float bne_val = inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW];
gix += bne_val * (iy_tsw - iy) * (iz - iz_tsw) * gOut;
giy -= bne_val * (ix - ix_tsw) * (iz - iz_tsw) * gOut;
giz += bne_val * (ix - ix_tsw) * (iy_tsw - iy) * gOut;
}
if (within_bounds_3d(iz_bsw, iy_bsw, ix_bsw, inp_D, inp_H, inp_W)) {
float bsw_val = inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW];
gix -= bsw_val * (iy - iy_tne) * (iz - iz_tne) * gOut;
giy += bsw_val * (ix_tne - ix) * (iz - iz_tne) * gOut;
giz += bsw_val * (ix_tne - ix) * (iy - iy_tne) * gOut;
}
if (within_bounds_3d(iz_bse, iy_bse, ix_bse, inp_D, inp_H, inp_W)) {
float bse_val = inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW];
gix += bse_val * (iy - iy_tnw) * (iz - iz_tnw) * gOut;
giy += bse_val * (ix - ix_tnw) * (iz - iz_tnw) * gOut;
giz += bse_val * (ix - ix_tnw) * (iy - iy_tnw) * gOut;
}
}
return make_float3(gix_mult * gix, giy_mult * giy, giz_mult * giz);
}
// this dummy struct necessary because c++ is dumb
template<typename out_t>
struct GridSampler {
static __forceinline__ __device__ out_t forward(int C, int inp_D, int inp_H, int inp_W,
float* vals, float3 pos, bool border) {
return grid_sample_forward<out_t>(C, inp_D, inp_H, inp_W, vals, pos, border);
}
static __forceinline__ __device__ float3 backward(int C, int inp_D, int inp_H, int inp_W,
float* vals, float* grad_vals, float3 pos, out_t grad_out, bool border) {
return grid_sample_backward<out_t>(C, inp_D, inp_H, inp_W, vals, grad_vals, pos, grad_out, border);
}
};
//template <typename T>
//__device__ void cswap ( T& a, T& b ) {
// T c(a); a=b; b=c;
//}
static __forceinline__ __device__
int within_bounds_3d_ind(int d, int h, int w, int D, int H, int W) {
return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W ? ((d * H) + h) * W + w : -1;
}
template<class out_t>
static __device__ out_t grid_sample_chlast_forward(int, int inp_D, int inp_H,
int inp_W, float * vals, float3 pos, bool border) {
int inp_sW = 1, inp_sH = inp_W, inp_sD = inp_W * inp_H;
// normalize ix, iy, iz from [-1, 1] to [0, inp_W-1] & [0, inp_H-1] & [0, inp_D-1]
float ix = max(-100.f, min(100.f, ((pos.x + 1.f) / 2))) * (inp_W - 1);
float iy = max(-100.f, min(100.f, ((pos.y + 1.f) / 2))) * (inp_H - 1);
float iz = max(-100.f, min(100.f, ((pos.z + 1.f) / 2))) * (inp_D - 1);
if (border) {
// clip coordinates to image borders
ix = clip_coordinates(ix, inp_W);
iy = clip_coordinates(iy, inp_H);
iz = clip_coordinates(iz, inp_D);
}
// get corner pixel values from (x, y, z)
// for 4d, we used north-east-south-west
// for 5d, we add top-bottom
int ix_tnw = static_cast<int>(::floor(ix));
int iy_tnw = static_cast<int>(::floor(iy));
int iz_tnw = static_cast<int>(::floor(iz));
int ix_tne = ix_tnw + 1;
int iy_tne = iy_tnw;
int iz_tne = iz_tnw;
int ix_tsw = ix_tnw;
int iy_tsw = iy_tnw + 1;
int iz_tsw = iz_tnw;
int ix_tse = ix_tnw + 1;
int iy_tse = iy_tnw + 1;
int iz_tse = iz_tnw;
int ix_bnw = ix_tnw;
int iy_bnw = iy_tnw;
int iz_bnw = iz_tnw + 1;
int ix_bne = ix_tnw + 1;
int iy_bne = iy_tnw;
int iz_bne = iz_tnw + 1;
int ix_bsw = ix_tnw;
int iy_bsw = iy_tnw + 1;
int iz_bsw = iz_tnw + 1;
int ix_bse = ix_tnw + 1;
int iy_bse = iy_tnw + 1;
int iz_bse = iz_tnw + 1;
// get surfaces to each neighbor:
float tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
float tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
float tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
float tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
float bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
float bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
float bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
float bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);
out_t result;
memset(&result, 0, sizeof(out_t));
out_t * inp_ptr_NC = (out_t*)vals;
out_t * out_ptr_NCDHW = &result;
{
if (within_bounds_3d(iz_tnw, iy_tnw, ix_tnw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW] * tnw;
}
if (within_bounds_3d(iz_tne, iy_tne, ix_tne, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW] * tne;
}
if (within_bounds_3d(iz_tsw, iy_tsw, ix_tsw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW] * tsw;
}
if (within_bounds_3d(iz_tse, iy_tse, ix_tse, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW] * tse;
}
if (within_bounds_3d(iz_bnw, iy_bnw, ix_bnw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW] * bnw;
}
if (within_bounds_3d(iz_bne, iy_bne, ix_bne, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW] * bne;
}
if (within_bounds_3d(iz_bsw, iy_bsw, ix_bsw, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW] * bsw;
}
if (within_bounds_3d(iz_bse, iy_bse, ix_bse, inp_D, inp_H, inp_W)) {
*out_ptr_NCDHW += inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW] * bse;
}
}
return result;
}
template<typename out_t>
static __device__ float3 grid_sample_chlast_backward(int, int inp_D, int inp_H,
int inp_W, float* vals, float* grad_vals, float3 pos, out_t grad_out,
bool border) {
int inp_sW = 1, inp_sH = inp_W, inp_sD = inp_W * inp_H;
int gInp_sW = 1, gInp_sH = inp_W, gInp_sD = inp_W * inp_H;
// normalize ix, iy, iz from [-1, 1] to [0, inp_W-1] & [0, inp_H-1] & [0, inp_D-1]
float ix = max(-100.f, min(100.f, ((pos.x + 1.f) / 2))) * (inp_W - 1);
float iy = max(-100.f, min(100.f, ((pos.y + 1.f) / 2))) * (inp_H - 1);
float iz = max(-100.f, min(100.f, ((pos.z + 1.f) / 2))) * (inp_D - 1);
float gix_mult = (inp_W - 1.f) / 2;
float giy_mult = (inp_H - 1.f) / 2;
float giz_mult = (inp_D - 1.f) / 2;
if (border) {
// clip coordinates to image borders
ix = clip_coordinates_set_grad(ix, inp_W, &gix_mult);
iy = clip_coordinates_set_grad(iy, inp_H, &giy_mult);
iz = clip_coordinates_set_grad(iz, inp_D, &giz_mult);
}
// get corner pixel values from (x, y, z)
// for 4d, we used north-east-south-west
// for 5d, we add top-bottom
int ix_tnw = static_cast<int>(::floor(ix));
int iy_tnw = static_cast<int>(::floor(iy));
int iz_tnw = static_cast<int>(::floor(iz));
int ix_tne = ix_tnw + 1;
int iy_tne = iy_tnw;
int iz_tne = iz_tnw;
int ix_tsw = ix_tnw;
int iy_tsw = iy_tnw + 1;
int iz_tsw = iz_tnw;
int ix_tse = ix_tnw + 1;
int iy_tse = iy_tnw + 1;
int iz_tse = iz_tnw;
int ix_bnw = ix_tnw;
int iy_bnw = iy_tnw;
int iz_bnw = iz_tnw + 1;
int ix_bne = ix_tnw + 1;
int iy_bne = iy_tnw;
int iz_bne = iz_tnw + 1;
int ix_bsw = ix_tnw;
int iy_bsw = iy_tnw + 1;
int iz_bsw = iz_tnw + 1;
int ix_bse = ix_tnw + 1;
int iy_bse = iy_tnw + 1;
int iz_bse = iz_tnw + 1;
// get surfaces to each neighbor:
float tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz);
float tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz);
float tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz);
float tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz);
float bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse);
float bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw);
float bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne);
float bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw);
float gix = static_cast<float>(0), giy = static_cast<float>(0), giz = static_cast<float>(0);
out_t *gOut_ptr_NCDHW = &grad_out;
out_t *gInp_ptr_NC = (out_t*)grad_vals;
out_t *inp_ptr_NC = (out_t*)vals;
// calculate bilinear weighted pixel value and set output pixel
{
out_t gOut = *gOut_ptr_NCDHW;
// calculate and set grad_input
safe_add_3d(gInp_ptr_NC, iz_tnw, iy_tnw, ix_tnw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tnw * gOut);
safe_add_3d(gInp_ptr_NC, iz_tne, iy_tne, ix_tne, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tne * gOut);
safe_add_3d(gInp_ptr_NC, iz_tsw, iy_tsw, ix_tsw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tsw * gOut);
safe_add_3d(gInp_ptr_NC, iz_tse, iy_tse, ix_tse, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, tse * gOut);
safe_add_3d(gInp_ptr_NC, iz_bnw, iy_bnw, ix_bnw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bnw * gOut);
safe_add_3d(gInp_ptr_NC, iz_bne, iy_bne, ix_bne, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bne * gOut);
safe_add_3d(gInp_ptr_NC, iz_bsw, iy_bsw, ix_bsw, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bsw * gOut);
safe_add_3d(gInp_ptr_NC, iz_bse, iy_bse, ix_bse, gInp_sD, gInp_sH, gInp_sW, inp_D, inp_H, inp_W, bse * gOut);
// calculate grad_grid
if (within_bounds_3d(iz_tnw, iy_tnw, ix_tnw, inp_D, inp_H, inp_W)) {
out_t tnw_val = inp_ptr_NC[iz_tnw * inp_sD + iy_tnw * inp_sH + ix_tnw * inp_sW];
gix -= (iy_bse - iy) * (iz_bse - iz) * dot(tnw_val, gOut);
giy -= (ix_bse - ix) * (iz_bse - iz) * dot(tnw_val, gOut);
giz -= (ix_bse - ix) * (iy_bse - iy) * dot(tnw_val, gOut);
}
if (within_bounds_3d(iz_tne, iy_tne, ix_tne, inp_D, inp_H, inp_W)) {
out_t tne_val = inp_ptr_NC[iz_tne * inp_sD + iy_tne * inp_sH + ix_tne * inp_sW];
gix += (iy_bsw - iy) * (iz_bsw - iz) * dot(tne_val, gOut);
giy -= (ix - ix_bsw) * (iz_bsw - iz) * dot(tne_val, gOut);
giz -= (ix - ix_bsw) * (iy_bsw - iy) * dot(tne_val, gOut);
}
if (within_bounds_3d(iz_tsw, iy_tsw, ix_tsw, inp_D, inp_H, inp_W)) {
out_t tsw_val = inp_ptr_NC[iz_tsw * inp_sD + iy_tsw * inp_sH + ix_tsw * inp_sW];
gix -= (iy - iy_bne) * (iz_bne - iz) * dot(tsw_val, gOut);
giy += (ix_bne - ix) * (iz_bne - iz) * dot(tsw_val, gOut);
giz -= (ix_bne - ix) * (iy - iy_bne) * dot(tsw_val, gOut);
}
if (within_bounds_3d(iz_tse, iy_tse, ix_tse, inp_D, inp_H, inp_W)) {
out_t tse_val = inp_ptr_NC[iz_tse * inp_sD + iy_tse * inp_sH + ix_tse * inp_sW];
gix += (iy - iy_bnw) * (iz_bnw - iz) * dot(tse_val, gOut);
giy += (ix - ix_bnw) * (iz_bnw - iz) * dot(tse_val, gOut);
giz -= (ix - ix_bnw) * (iy - iy_bnw) * dot(tse_val, gOut);
}
if (within_bounds_3d(iz_bnw, iy_bnw, ix_bnw, inp_D, inp_H, inp_W)) {
out_t bnw_val = inp_ptr_NC[iz_bnw * inp_sD + iy_bnw * inp_sH + ix_bnw * inp_sW];
gix -= (iy_tse - iy) * (iz - iz_tse) * dot(bnw_val, gOut);
giy -= (ix_tse - ix) * (iz - iz_tse) * dot(bnw_val, gOut);
giz += (ix_tse - ix) * (iy_tse - iy) * dot(bnw_val, gOut);
}
if (within_bounds_3d(iz_bne, iy_bne, ix_bne, inp_D, inp_H, inp_W)) {
out_t bne_val = inp_ptr_NC[iz_bne * inp_sD + iy_bne * inp_sH + ix_bne * inp_sW];
gix += (iy_tsw - iy) * (iz - iz_tsw) * dot(bne_val, gOut);
giy -= (ix - ix_tsw) * (iz - iz_tsw) * dot(bne_val, gOut);
giz += (ix - ix_tsw) * (iy_tsw - iy) * dot(bne_val, gOut);
}
if (within_bounds_3d(iz_bsw, iy_bsw, ix_bsw, inp_D, inp_H, inp_W)) {
out_t bsw_val = inp_ptr_NC[iz_bsw * inp_sD + iy_bsw * inp_sH + ix_bsw * inp_sW];
gix -= (iy - iy_tne) * (iz - iz_tne) * dot(bsw_val, gOut);
giy += (ix_tne - ix) * (iz - iz_tne) * dot(bsw_val, gOut);
giz += (ix_tne - ix) * (iy - iy_tne) * dot(bsw_val, gOut);
}
if (within_bounds_3d(iz_bse, iy_bse, ix_bse, inp_D, inp_H, inp_W)) {
out_t bse_val = inp_ptr_NC[iz_bse * inp_sD + iy_bse * inp_sH + ix_bse * inp_sW];
gix += (iy - iy_tnw) * (iz - iz_tnw) * dot(bse_val, gOut);
giy += (ix - ix_tnw) * (iz - iz_tnw) * dot(bse_val, gOut);
giz += (ix - ix_tnw) * (iy - iy_tnw) * dot(bse_val, gOut);
}
}
return make_float3(gix_mult * gix, giy_mult * giy, giz_mult * giz);
}
template<typename out_t>
struct GridSamplerChlast {
static __forceinline__ __device__ out_t forward(int C, int inp_D, int inp_H, int inp_W,
float* vals, float3 pos, bool border) {
return grid_sample_chlast_forward<out_t>(C, inp_D, inp_H, inp_W, vals, pos, border);
}
static __forceinline__ __device__ float3 backward(int C, int inp_D, int inp_H, int inp_W,
float* vals, float* grad_vals, float3 pos, out_t grad_out, bool border) {
return grid_sample_chlast_backward<out_t>(C, inp_D, inp_H, inp_W, vals, grad_vals, pos, grad_out, border);
}
};
inline __host__ __device__ float min_component(float3 a) {
return fminf(fminf(a.x,a.y),a.z);
}
inline __host__ __device__ float max_component(float3 a) {
return fmaxf(fmaxf(a.x,a.y),a.z);
}
inline __host__ __device__ float3 abs(float3 a) {
return make_float3(abs(a.x), abs(a.y), abs(a.z));
}
__forceinline__ __device__ bool ray_aabb_hit(float3 p0, float3 p1, float3 raypos, float3 raydir) {
float3 t0 = (p0 - raypos) / raydir;
float3 t1 = (p1 - raypos) / raydir;
float3 tmin = fminf(t0,t1), tmax = fmaxf(t0,t1);
return max_component(tmin) <= min_component(tmax);
}
__forceinline__ __device__ bool ray_aabb_hit_ird(float3 p0, float3 p1, float3 raypos, float3 ird) {
float3 t0 = (p0 - raypos) * ird;
float3 t1 = (p1 - raypos) * ird;
float3 tmin = fminf(t0,t1), tmax = fmaxf(t0,t1);
return max_component(tmin) <= min_component(tmax);
}
__forceinline__ __device__ void ray_aabb_hit_ird_tminmax(float3 p0, float3 p1,
float3 raypos, float3 ird, float &otmin, float &otmax) {
float3 t0 = (p0 - raypos) * ird;
float3 t1 = (p1 - raypos) * ird;
float3 tmin = fminf(t0,t1), tmax = fmaxf(t0,t1);
tmin = fminf(t0,t1);
tmax = fmaxf(t0,t1);
otmin = max_component(tmin);
otmax = min_component(tmax);
}
inline __device__ bool aabb_intersect(float3 p0, float3 p1, float3 r0, float3 rd, float &tmin, float &tmax) {
float tymin, tymax, tzmin, tzmax;
const float3 bounds[2] = {p0, p1};
float3 ird = 1.0f/rd;
int sx = (ird.x<0) ? 1 : 0;
int sy = (ird.y<0) ? 1 : 0;
int sz = (ird.z<0) ? 1 : 0;
tmin = (bounds[sx].x - r0.x) * ird.x;
tmax = (bounds[1-sx].x - r0.x) * ird.x;
tymin = (bounds[sy].y - r0.y) * ird.y;
tymax = (bounds[1-sy].y - r0.y) * ird.y;
if ((tmin > tymax) || (tymin > tmax))
return false;
if (tymin > tmin)
tmin = tymin;
if (tymax < tmax)
tmax = tymax;
tzmin = (bounds[sz].z - r0.z) * ird.z;
tzmax = (bounds[1-sz].z - r0.z) * ird.z;
if ((tmin > tzmax) || (tzmin > tmax))
return false;
if (tzmin > tmin)
tmin = tzmin;
if (tzmax < tmax)
tmax = tzmax;
return true;
}
template<bool sortboxes, int maxhitboxes, bool sync, class PrimTransfT>
static __forceinline__ __device__ void ray_subset_fixedbvh(
unsigned warpmask,
int K,
float3 raypos,
float3 raydir,
float2 tminmax,
float2 &rtminmax,
int * sortedobjid,
int2 * nodechildren,
float3 * nodeaabb,
const typename PrimTransfT::Data & primtransf_data,
int *hitboxes,
int & num) {
float3 iraydir = 1.0f/raydir;
int stack[64];
int* stack_ptr = stack;
*stack_ptr++ = -1;
int node = 0;
do {
// check if we're in a leaf
if (node >= (K - 1)) {
{
int k = node - (K - 1);
float3 r0, rd;
PrimTransfT::forward2(primtransf_data, k, raypos, raydir, r0, rd);
float3 ird = 1.0f/rd;
float3 t0 = (-1.f - r0) * ird;
float3 t1 = (1.f - r0) * ird;
float3 tmin = fminf(t0,t1), tmax = fmaxf(t0,t1);
float trmin = max_component(tmin);
float trmax = min_component(tmax);
bool intersection = trmin <= trmax;
if (intersection) {
// hit
rtminmax.x = fminf(rtminmax.x, trmin);
rtminmax.y = fmaxf(rtminmax.y, trmax);
}
if (sync) {
intersection = __any_sync(warpmask, intersection);
}
if (intersection) {
if (sortboxes) {
if (num < maxhitboxes) {
int j = num - 1;
while (j >= 0 && hitboxes[j] > k) {
hitboxes[j + 1] = hitboxes[j];
j = j - 1;
}
hitboxes[j + 1] = k;
num++;
}
} else {
if (num < maxhitboxes) {
hitboxes[num++] = k;
}
}
}
}
node = *--stack_ptr;
} else {
int2 children = make_int2(node * 2 + 1, node * 2 + 2);
// check if we're in each child's bbox
float3 * nodeaabb_ptr = nodeaabb + children.x * 2;
bool traverse_l = ray_aabb_hit_ird(nodeaabb_ptr[0], nodeaabb_ptr[1], raypos, iraydir);
bool traverse_r = ray_aabb_hit_ird(nodeaabb_ptr[2], nodeaabb_ptr[3], raypos, iraydir);
if (sync) {
traverse_l = __any_sync(warpmask, traverse_l);
traverse_r = __any_sync(warpmask, traverse_r);
}
// update stack
if (!traverse_l && !traverse_r) {
node = *--stack_ptr;
} else {
node = traverse_l ? children.x : children.y;
if (traverse_l && traverse_r) {
*stack_ptr++ = children.y;
}
}
if (sync) {
__syncwarp(warpmask);
}
}
} while (node != -1);
}
template<bool sortboxes, int maxhitboxes, bool sync, class PrimTransfT>
struct RaySubsetFixedBVH {
static __forceinline__ __device__ void forward(
unsigned warpmask,
int K,
float3 raypos,
float3 raydir,
float2 tminmax,
float2 &rtminmax,
int * sortedobjid,
int2 * nodechildren,
float3 * nodeaabb,
const typename PrimTransfT::Data & primtransf_data,
int *hitboxes,
int & num) {
ray_subset_fixedbvh<sortboxes, maxhitboxes, sync, PrimTransfT>(
warpmask, K, raypos, raydir, tminmax, rtminmax,
sortedobjid, nodechildren, nodeaabb, primtransf_data, hitboxes, num);
}
};
#endif
|