Spaces:
Running
Running
from typing import Dict, Union | |
from gliner import GLiNER | |
import gradio as gr | |
model = GLiNER.from_pretrained("BSC-NLP4BIA/chagas-ner", | |
revision="NuNER_Zero_2025-02-16_22-10-21", | |
load_tokenizer=True | |
) | |
examples = [ | |
[ | |
"""Sexo: Femenino | |
País de Nacimiento: Paraguay | |
Fecha de Nacimiento: XXXX | |
Resultado Chagas: Positivo | |
Informe: Seguimiento de consultas externas | |
Visita: Primera visita | |
Fecha: 20 de julio XXXX | |
Paciente paraguaya de 32 años diagnosticada con enfermedad de Chagas tras cribado comunitario. Sin antecedentes transfusionales ni de familiares afectados. Refiere buen estado general. | |
EF: | |
Buen estado general. | |
AC: rítmico, sin soplos. | |
AP: MVC sin hallazgos. | |
Abdomen blando, sin masas. | |
PLAN: | |
Solicitar estudio inicial de Chagas con ECG, ETT y serología. | |
Informe: Seguimiento de consultas externas | |
Visita: Seguimiento | |
Fecha: 10 de diciembre XXXX | |
Asintomática. PCR para T.cruzi negativa. ECG muestra ritmo sinusal con bloqueo de rama derecha. ETT sin alteraciones funcionales. | |
EF: | |
Sin cambios en exploración física. | |
PLAN: | |
Seguimiento anual con ECG y serología.""", | |
"ENFERMEDAD, SINTOMA", | |
0.5, | |
False, | |
], | |
] | |
def ner( | |
text, labels: str, threshold: float, nested_ner: bool | |
) -> Dict[str, Union[str, int, float]]: | |
labels = labels.split(",") | |
return { | |
"text": text, | |
"entities": [ | |
{ | |
"entity": entity["label"], | |
"word": entity["text"], | |
"start": entity["start"], | |
"end": entity["end"], | |
"score": 0, | |
} | |
for entity in model.predict_entities( | |
text, labels, flat_ner=not nested_ner, threshold=threshold | |
) | |
], | |
} | |
with gr.Blocks(title="GLiNER for Chagas detection - NER ") as demo: | |
input_text = gr.Textbox( | |
value=examples[0][0], label="Text input", placeholder="Enter your text here" | |
) | |
with gr.Row() as row: | |
labels = gr.Textbox( | |
value=examples[0][1], | |
label="Labels", | |
placeholder="Enter your labels here (comma separated)", | |
scale=2, | |
) | |
threshold = gr.Slider( | |
0, | |
1, | |
value=0.5, | |
step=0.01, | |
label="Threshold", | |
info="Lower the threshold to increase how many entities get predicted.", | |
scale=1, | |
) | |
nested_ner = gr.Checkbox( | |
value=examples[0][2], | |
label="Nested NER", | |
info="Allow for nested NER?", | |
scale=0, | |
) | |
output = gr.HighlightedText(label="Predicted Entities") | |
submit_btn = gr.Button("Submit") | |
examples = gr.Examples( | |
examples, | |
fn=ner, | |
inputs=[input_text, labels, threshold, nested_ner], | |
outputs=output, | |
cache_examples=True, | |
) | |
# Submitting | |
input_text.submit( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
labels.submit( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
threshold.release( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
submit_btn.click( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
nested_ner.change( | |
fn=ner, inputs=[input_text, labels, threshold, nested_ner], outputs=output | |
) | |
demo.queue() | |
demo.launch(debug=True) | |