hotel_tools / app.py
ankush13r's picture
Update app.py
40af847 verified
raw
history blame
7.21 kB
import gradio as gr
from gradio import ChatMessage
import json
from openai import OpenAI
from tools import tools, oitools
from dotenv import load_dotenv
from datetime import datetime
import os
import re
load_dotenv(".env")
HF_TOKEN = os.environ.get("HF_TOKEN")
BASE_URL = os.environ.get("BASE_URL")
SYSTEM_PROMPT_TEMPLATE = """You are an AI assistant for a **hotel booking and information system**. Your role is to assist users with:
* Booking hotel rooms
* Modifying or canceling hotel reservations
* Providing information about hotel accommodations, facilities, dining, and services
Today’s date is **{date}**, but you must **never assume** this date for reservations. Always ask the user for their **preferred check-in and check-out dates**.
---
### 🧭 Response Guidelines:
* **Always Ask First:** For any reservation-related task, **always ask the user for**:
* **Check-in date**
* **Check-out date**
* **Number of guests**
* **Guest name**
* **Room type**
*Do not proceed or call any tool until all required information is explicitly provided by the user.*
* **Be accurate:** Do **not** use hotel-related tools for general questions (e.g., weather, transportation, city facts). Respond normally in those cases.
* **Be precise:** Use **only the information the user has provided**. Do not assume or generate missing values.
* **Be complete:** If any essential detail is missing, ask for it clearly before continuing.
* **Be clear and concise:** If the request is ambiguous, ask for clarification.
* **Match the user’s language:** Reply in the same language the user uses.
* Avoid unnecessary tool calls. Use them only when the request clearly involves hotel services.
"""
# print(json.dumps(oitools, indent=2))
client = OpenAI(
base_url=f"{BASE_URL}/v1",
api_key=HF_TOKEN
)
def today_date():
return datetime.today().strftime('%A, %B %d, %Y, %I:%M %p')
def clean_json_string(json_str):
try:
data = json.loads(json_str)
if type(data) == list:
return json.dumps(data[0])
return json_str
except:
return re.sub(r'[ ,}\s]+$', '', json_str) + '}'
def completion(history, model, system_prompt: str, tools=None):
messages = [{"role": "system", "content": system_prompt.format(date=today_date())}]
for msg in history:
if isinstance(msg, dict):
msg = ChatMessage(**msg)
if msg.role == "assistant" and hasattr(msg, "metadata") and msg.metadata:
tools_calls = json.loads(msg.metadata.get("title", "[]"))
# for tool_calls in tools_calls:
# tool_calls["function"]["arguments"] = json.loads(tool_calls["function"]["arguments"])
messages.append({"role": "assistant", "tool_calls": tools_calls, "content": ""})
messages.append({"role": "tool", "content": msg.content})
else:
messages.append({"role": msg.role, "content": msg.content})
request_params = {
"model": model,
"messages": messages,
"stream": True,
"max_tokens": 1000,
"temperature": 0.05,
#"top_p": 0.3,
#"frequency_penalty": 0.3,
"extra_body": {"min_p": 0.2 , "top_k": 20}, #"min_p": 0.4 , "top_k": 20 #"repetition_penalty": 1.1,
}
if tools:
request_params.update({"tool_choice": "auto", "tools": tools})
return client.chat.completions.create(**request_params)
def llm_in_loop(history, system_prompt, recursive):
try:
models = client.models.list()
model = models.data[0].id if models.data else "gpt-3.5-turbo"
except Exception as err:
gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20)
raise err
arguments = ""
name = ""
chat_completion = completion(history=history, tools=oitools, model=model, system_prompt=system_prompt)
appended = False
# if chat_completion.choices and chat_completion.choices[0].message.tool_calls:
# call = chat_completion.choices[0].message.tool_calls[0]
# if hasattr(call.function, "name") and call.function.name:
# name = call.function.name
# if hasattr(call.function, "arguments") and call.function.arguments:
# arguments += call.function.arguments
# elif chat_completion.choices[0].message.content:
# if not appended:
# history.append(ChatMessage(role="assistant", content=""))
# appended = True
# history[-1].content += chat_completion.choices[0].message.content
# yield history[recursive:]
for chunk in chat_completion:
if chunk.choices and chunk.choices[0].delta.tool_calls:
call = chunk.choices[0].delta.tool_calls[0]
if hasattr(call.function, "name") and call.function.name:
name = call.function.name
if hasattr(call.function, "arguments") and call.function.arguments:
arguments += call.function.arguments
elif chunk.choices[0].delta.content:
if not appended:
history.append(ChatMessage(role="assistant", content=""))
appended = True
history[-1].content += chunk.choices[0].delta.content
yield history[recursive:]
if name:
print("------------------------")
print(name, arguments)
arguments = clean_json_string(arguments) if arguments else "{}"
print(name, arguments)
print("====================")
arguments = json.loads(arguments)
result = f"💥 Error using tool {name}, tool doesn't exist" if name not in tools else str(tools[name].invoke(input=arguments))
result = json.dumps({name: result}, ensure_ascii=False)
# msg = ChatMessage(
# role="assistant",
# content="",
# metadata= {"title": f"🛠️ Using tool '{name}', arguments: {json.dumps(json_arguments, ensure_ascii=False)}"},
# options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}]
# )
msg = ChatMessage(role="assistant", content=result, metadata={"title": json.dumps([{"id": "call_id", "function": {"arguments": json.dumps(arguments, ensure_ascii=False), "name": name}, "type": "function"}], ensure_ascii=False)})
if appended:
print("Text with function", history[-1].content)
msg.content = history[-1].content + "\n" + msg.content
history[-1] = msg
else:
history.append(msg)
yield history[recursive:]
yield from llm_in_loop(history, system_prompt, recursive - 1)
def respond(message, history, additional_inputs):
history.append(ChatMessage(role="user", content=message))
yield from llm_in_loop(history, additional_inputs, -1)
if __name__ == "__main__":
system_prompt = gr.Textbox(label="System prompt", value=SYSTEM_PROMPT_TEMPLATE, lines=3)
demo = gr.ChatInterface(respond, type="messages", additional_inputs=[system_prompt])
demo.launch()