File size: 5,273 Bytes
b380376
 
 
 
 
 
 
648a7c5
 
 
b380376
 
 
 
 
648a7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b380376
648a7c5
 
b380376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648a7c5
b380376
 
 
648a7c5
b380376
 
 
 
 
648a7c5
b380376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from langchain_community.document_loaders import PyPDFLoader,DirectoryLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
import os
from langchain.prompts import PromptTemplate
from langchain_together import Together
from langchain.chat_models import ChatOpenAI
from htmlTemplates import css, bot_template, user_template
from langchain.embeddings import openai
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
import time

from openai import OpenAI
api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=api_key)


# creating custom template to guide llm model
custom_template ="""<s>[INST]You will start the conversation by greeting the user and introducing yourself as qanoon-bot,\
stating your availability for legal assistance. Your next step will depend on the user's response.\
If the user expresses a need for legal assistance in Pakistan, you will ask them to describe their case or problem.\
After receiving the case or problem details from the user, you will provide the solutions and procedures according to the knowledge base and also give related penal codes and procedures. \
However, if the user does not require legal assistance in Pakistan, you will immediately thank them and\
say goodbye, ending the conversation. Remember to base your responses on the user's needs, providing accurate and\
concise information regarding the Pakistan legal law and rights where applicable. Your interactions should be professional and\
focused, ensuring the user's queries are addressed efficiently without deviating from the set flows.\
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
</s>[INST]
"""

embeddings=OpenAIEmbeddings()
#embeddings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1",model_kwargs={"trust_remote_code":True,"revision":"289f532e14dbbbd5a04753fa58739e9ba766f3c7"})
#vectordb = Chroma.from_documents(texts, embedding=embeddings, persist_directory="./data")
#db_retriever =vectordb.as_retriever(search_type="similarity",search_kwargs={'k':4})

db = FAISS.load_local("vectordb", embeddings, allow_dangerous_deserialization=True)
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 4})


st.set_page_config(page_title="Qanoon-Bot")
col1, col2, col3 = st.columns([1,4,1])
with col2:
    st.image("https://s3.ap-south-1.amazonaws.com/makerobosfastcdn/cms-assets/Legal_AI_Chatbot.png")

st.markdown(
    """
    <style>
div.stButton > button:first-child {
    background-color: #ffd0d0;
}
div.stButton > button:active {
    background-color: #ff6262;
}
   div[data-testid="stStatusWidget"] div button {
        display: none;
        }
    
    .reportview-container {
            margin-top: -2em;
        }
        #MainMenu {visibility: hidden;}
        .stDeployButton {display:none;}
        footer {visibility: hidden;}
        #stDecoration {display:none;}
    button[title="View fullscreen"]{
    visibility: hidden;}
        </style>
""",
    unsafe_allow_html=True,
)

def reset_conversation():
  st.session_state.messages = []
  st.session_state.memory.clear()

if "messages" not in st.session_state:
    st.session_state.messages = []

if "memory" not in st.session_state:
    st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history",return_messages=True) 

#embeddings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1",model_kwargs={"trust_remote_code":True,"revision":"289f532e14dbbbd5a04753fa58739e9ba766f3c7"})
#db=FAISS.load_local("/content/ipc_vector_db", embeddings, allow_dangerous_deserialization=True)


prompt = PromptTemplate(template=custom_template,
                        input_variables=['context', 'question', 'chat_history'])

# You can also use other LLMs options from https://python.langchain.com/docs/integrations/llms. Here I have used TogetherAI API

from config import together_api
llm=ChatOpenAI(temperature=0.2,model_name='gpt-3.5-turbo-0125')
qa = ConversationalRetrievalChain.from_llm(
    llm=llm,
    memory=st.session_state.memory,
    retriever=db_retriever,
    combine_docs_chain_kwargs={'prompt': prompt}
)

for message in st.session_state.messages:
    with st.chat_message(message.get("role")):
        st.write(message.get("content"))

input_prompt = st.chat_input("Say something")

if input_prompt:
    with st.chat_message("user"):
        st.write(input_prompt)

    st.session_state.messages.append({"role":"user","content":input_prompt})

    with st.chat_message("assistant"):
        with st.status("Thinking πŸ’‘...",expanded=True):
            result = qa.invoke(input=input_prompt)

            message_placeholder = st.empty()

            full_response = "**_Note: Information provided by Qanoon-Bot may be inaccurate. ** \n\n\n"
        for chunk in result["answer"]:
            full_response+=chunk
            time.sleep(0.02)
            
            message_placeholder.markdown(full_response+" β–Œ")
        st.button('Reset All Chat πŸ—‘οΈ', on_click=reset_conversation)

    st.session_state.messages.append({"role":"assistant","content":result["answer"]})