File size: 2,582 Bytes
fc6f52e
 
 
8de8f0a
0021024
fc6f52e
8de8f0a
 
 
fc6f52e
 
 
88e965c
fc6f52e
 
 
 
88e965c
fc6f52e
8de8f0a
 
 
 
fc6f52e
 
 
88e965c
fc6f52e
 
 
88e965c
 
fc6f52e
 
 
 
88e965c
fc6f52e
88e965c
 
 
 
fc6f52e
4feaad3
8de8f0a
4de8cde
8de8f0a
 
4feaad3
 
8de8f0a
4feaad3
 
8de8f0a
88e965c
8de8f0a
 
 
 
4feaad3
8de8f0a
4feaad3
 
8de8f0a
 
88e965c
8de8f0a
0ba6d66
8de8f0a
fc6f52e
88e965c
fc6f52e
4feaad3
fc6f52e
 
 
 
 
 
 
 
 
 
 
4feaad3
fc6f52e
 
 
 
88e965c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
from huggingface_hub import InferenceClient

# Default client with the first model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")

# Function to switch between models based on selection
def switch_client(model_name: str):
    return InferenceClient(model_name)

def respond(
    message,
    history: list[dict],
    system_message,
    max_tokens,
    temperature,
    top_p,
    model_name
):
    # Switch client based on model selection
    global client
    client = switch_client(model_name)
    
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        messages.append({"role": val['role'], "content": val['content']})

    messages.append({"role": "user", "content": message})

    # Get the response from the model
    response = client.chat_completion(
        messages,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )

    # Extract the content from the response
    final_response = response.choices[0].message['content']
    
    return final_response

# Model names and their pseudonyms
model_choices = [
    ("mistralai/Mistral-7B-Instruct-v0.3", "Lake 1 Base")
]

# Convert pseudonyms to model names for the dropdown
pseudonyms = [model[1] for model in model_choices]

# Function to handle model selection and pseudonyms
def respond_with_pseudonym(
    message,
    history: list[dict],
    system_message,
    max_tokens,
    temperature,
    top_p,
    selected_pseudonym
):
    # Find the actual model name from the pseudonym
    model_name = next(model[0] for model in model_choices if model[1] == selected_pseudonym)
    
    # Call the existing respond function
    response = respond(message, history, system_message, max_tokens, temperature, top_p, model_name)
    
    # No longer adding the pseudonym at the end of the response
    return response

# Gradio Chat Interface
demo = gr.ChatInterface(
    respond_with_pseudonym,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
        gr.Dropdown(pseudonyms, label="Select Model", value=pseudonyms[0])  # Pseudonym selection dropdown
    ],
)

if __name__ == "__main__":
    demo.launch()