HelloGitHub commited on
Commit
e854023
·
1 Parent(s): 11923fe

update about table

Browse files
Files changed (1) hide show
  1. src/about.py +86 -17
src/about.py CHANGED
@@ -177,23 +177,92 @@ Planning
177
 
178
  We have categorized the data of the above 10 datasets by capability dimensions, and summarized four major capability dimensions required for embodied intelligence scenarios: spatial reasoning, perception, prediction, and planning. According to the capability dimensions, a high-quality subset with 2,042 samples was sampled. The definitions of the capability dimensions and the data volume of each dimension are as follows:
179
 
180
- | | | | |
181
- |---|---|---|---|
182
- |Capability Dimension(能力维度)|Sub-capability Dimension(子能力维度 )|Data Volume(数据量)|Percentage(百分比)|
183
- |Spatial Reasoning|Dynamic|200|18.43%|
184
- |Relative direction|200|18.43%|
185
- |Multi-view matching|200|18.43%|
186
- |Relative distance|200|18.43%|
187
- |Depth estimation|107|9.86%|
188
- |Relative shape|82|7.56%|
189
- |Size estimation|96|8.85%|
190
- |Perception|Visual Grounding|200|44.64%|
191
- |Counting|200|44.64%|
192
- |State & Activity Understanding|48|10.71%|
193
- |Prediction|Trajectory|188|76.73%|
194
- |Future prediction|57|23.27%|
195
- |Planning|Goal Decomposition|200|75.76%|
196
- |Navigation|64|24.24%|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
 
198
  ## EmbodiedVerse Tool - FlagEvalMM
199
 
 
177
 
178
  We have categorized the data of the above 10 datasets by capability dimensions, and summarized four major capability dimensions required for embodied intelligence scenarios: spatial reasoning, perception, prediction, and planning. According to the capability dimensions, a high-quality subset with 2,042 samples was sampled. The definitions of the capability dimensions and the data volume of each dimension are as follows:
179
 
180
+ <table>
181
+ <thead>
182
+ <tr>
183
+ <th>Capability Dimension (能力维度)</th>
184
+ <th>Sub-capability Dimension (子能力维度)</th>
185
+ <th>Data Volume (数据量)</th>
186
+ <th>Percentage (百分比)</th>
187
+ </tr>
188
+ </thead>
189
+ <tbody>
190
+ <tr>
191
+ <td rowspan="7">Spatial Reasoning</td>
192
+ <td>Dynamic</td>
193
+ <td>200</td>
194
+ <td>18.43%</td>
195
+ </tr>
196
+ <tr>
197
+ <td>Relative direction</td>
198
+ <td>200</td>
199
+ <td>18.43%</td>
200
+ </tr>
201
+ <tr>
202
+ <td>Multi-view matching</td>
203
+ <td>200</td>
204
+ <td>18.43%</td>
205
+ </tr>
206
+ <tr>
207
+ <td>Relative distance</td>
208
+ <td>200</td>
209
+ <td>18.43%</td>
210
+ </tr>
211
+ <tr>
212
+ <td>Depth estimation</td>
213
+ <td>107</td>
214
+ <td>9.86%</td>
215
+ </tr>
216
+ <tr>
217
+ <td>Relative shape</td>
218
+ <td>82</td>
219
+ <td>7.56%</td>
220
+ </tr>
221
+ <tr>
222
+ <td>Size estimation</td>
223
+ <td>96</td>
224
+ <td>8.85%</td>
225
+ </tr>
226
+ <tr>
227
+ <td rowspan="3">Perception</td>
228
+ <td>Visual Grounding</td>
229
+ <td>200</td>
230
+ <td>44.64%</td>
231
+ </tr>
232
+ <tr>
233
+ <td>Counting</td>
234
+ <td>200</td>
235
+ <td>44.64%</td>
236
+ </tr>
237
+ <tr>
238
+ <td>State & Activity Understanding</td>
239
+ <td>48</td>
240
+ <td>10.71%</td>
241
+ </tr>
242
+ <tr>
243
+ <td rowspan="2">Prediction</td>
244
+ <td>Trajectory</td>
245
+ <td>188</td>
246
+ <td>76.73%</td>
247
+ </tr>
248
+ <tr>
249
+ <td>Future prediction</td>
250
+ <td>57</td>
251
+ <td>23.27%</td>
252
+ </tr>
253
+ <tr>
254
+ <td rowspan="2">Planning</td>
255
+ <td>Goal Decomposition</td>
256
+ <td>200</td>
257
+ <td>75.76%</td>
258
+ </tr>
259
+ <tr>
260
+ <td>Navigation</td>
261
+ <td>64</td>
262
+ <td>24.24%</td>
263
+ </tr>
264
+ </tbody>
265
+ </table>
266
 
267
  ## EmbodiedVerse Tool - FlagEvalMM
268