Spaces:
Running
Running
lixuejing
commited on
Commit
·
9d5b710
1
Parent(s):
b678721
update
Browse files- src/display/utils.py +2 -2
- src/leaderboard/read_evals.py +26 -9
- src/populate.py +17 -0
src/display/utils.py
CHANGED
|
@@ -27,7 +27,7 @@ auto_eval_column_dict = []
|
|
| 27 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 28 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 29 |
#Scores
|
| 30 |
-
|
| 31 |
for task in Tasks:
|
| 32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 33 |
# Model information
|
|
@@ -51,7 +51,7 @@ auto_eval_column_quota_dict = []
|
|
| 51 |
auto_eval_column_quota_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 52 |
auto_eval_column_quota_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 53 |
#Scores
|
| 54 |
-
|
| 55 |
for task in Quotas:
|
| 56 |
auto_eval_column_quota_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 57 |
# Model information
|
|
|
|
| 27 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 28 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 29 |
#Scores
|
| 30 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 31 |
for task in Tasks:
|
| 32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 33 |
# Model information
|
|
|
|
| 51 |
auto_eval_column_quota_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 52 |
auto_eval_column_quota_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 53 |
#Scores
|
| 54 |
+
auto_eval_column_quota_dict.append(["average_quota", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 55 |
for task in Quotas:
|
| 56 |
auto_eval_column_quota_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 57 |
# Model information
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -8,7 +8,7 @@ import dateutil
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Quotas
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
|
@@ -99,7 +99,11 @@ class EvalResult:
|
|
| 99 |
|
| 100 |
mean_acc = np.mean(accs) if len(accs) > 0 else 0
|
| 101 |
print("mean_acc", task.metric, mean_acc)
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
return self(
|
| 105 |
eval_name=result_key,
|
|
@@ -144,7 +148,7 @@ class EvalResult:
|
|
| 144 |
average = 0
|
| 145 |
nums = 0
|
| 146 |
for k,v in self.results.items():
|
| 147 |
-
if k not in ["Visual Grounding","Counting","State & Activity Understanding","Dynamic","Relative direction","Multi-view matching","Relative distance","Depth estimation","Relative shape","Size estimation","Trajectory","Future prediction","Goal Decomposition","Navigation"]:
|
| 148 |
if v is not None and v != 0:
|
| 149 |
average += v
|
| 150 |
nums += 1
|
|
@@ -152,6 +156,17 @@ class EvalResult:
|
|
| 152 |
average = 0
|
| 153 |
else:
|
| 154 |
average = average/nums
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
data_dict = {
|
| 157 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
@@ -163,7 +178,8 @@ class EvalResult:
|
|
| 163 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 164 |
AutoEvalColumn.dummy.name: self.full_model,
|
| 165 |
AutoEvalColumn.revision.name: self.revision,
|
| 166 |
-
|
|
|
|
| 167 |
|
| 168 |
#AutoEvalColumn.license.name: self.license,
|
| 169 |
#AutoEvalColumn.likes.name: self.likes,
|
|
@@ -186,13 +202,14 @@ class EvalResult:
|
|
| 186 |
|
| 187 |
for task in Quotas:
|
| 188 |
#data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
| 189 |
-
if task.value.
|
| 190 |
data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
| 191 |
else:
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
| 196 |
|
| 197 |
return data_dict
|
| 198 |
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
+
from src.display.utils import AutoEvalColumn, AutoEvalColumnQuota, ModelType, Tasks, Precision, WeightType, Quotas
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
|
|
|
| 99 |
|
| 100 |
mean_acc = np.mean(accs) if len(accs) > 0 else 0
|
| 101 |
print("mean_acc", task.metric, mean_acc)
|
| 102 |
+
if task.metric == "overall":
|
| 103 |
+
results[task.benchmark] = mean_acc
|
| 104 |
+
else:
|
| 105 |
+
results[task.metric] = mean_acc
|
| 106 |
+
|
| 107 |
|
| 108 |
return self(
|
| 109 |
eval_name=result_key,
|
|
|
|
| 148 |
average = 0
|
| 149 |
nums = 0
|
| 150 |
for k,v in self.results.items():
|
| 151 |
+
if k not in ["Perception","SpatialReasoning","Prediction","Planning","Visual Grounding","Counting","State & Activity Understanding","Dynamic","Relative direction","Multi-view matching","Relative distance","Depth estimation","Relative shape","Size estimation","Trajectory","Future prediction","Goal Decomposition","Navigation"]:
|
| 152 |
if v is not None and v != 0:
|
| 153 |
average += v
|
| 154 |
nums += 1
|
|
|
|
| 156 |
average = 0
|
| 157 |
else:
|
| 158 |
average = average/nums
|
| 159 |
+
|
| 160 |
+
nums,average_quota=0,0
|
| 161 |
+
for k,v in self.results.items():
|
| 162 |
+
if k in ["Perception","SpatialReasoning","Prediction","Planning"]:
|
| 163 |
+
f v is not None and v != 0:
|
| 164 |
+
average_quota += v
|
| 165 |
+
nums += 1
|
| 166 |
+
if nums ==0:
|
| 167 |
+
average_quota = 0
|
| 168 |
+
else:
|
| 169 |
+
average_quota = average_quota/nums
|
| 170 |
|
| 171 |
data_dict = {
|
| 172 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
|
| 178 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 179 |
AutoEvalColumn.dummy.name: self.full_model,
|
| 180 |
AutoEvalColumn.revision.name: self.revision,
|
| 181 |
+
AutoEvalColumn.average.name: average,
|
| 182 |
+
AutoEvalColumnQuota.average_quota.name: average_quota,
|
| 183 |
|
| 184 |
#AutoEvalColumn.license.name: self.license,
|
| 185 |
#AutoEvalColumn.likes.name: self.likes,
|
|
|
|
| 202 |
|
| 203 |
for task in Quotas:
|
| 204 |
#data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
| 205 |
+
if task.value.metric != "overall":
|
| 206 |
data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
| 207 |
else:
|
| 208 |
+
data_dict[task.value.col_name] = self.results.get(task.value.bench, 0)
|
| 209 |
+
#if self.results.get(task.value.benchmark, 0) == 0:
|
| 210 |
+
# data_dict[task.value.col_name] = "-"
|
| 211 |
+
#else:
|
| 212 |
+
# data_dict[task.value.col_name] = "%.2f" % self.results.get(task.value.metric, 0)
|
| 213 |
|
| 214 |
return data_dict
|
| 215 |
|
src/populate.py
CHANGED
|
@@ -27,6 +27,23 @@ def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,
|
|
| 27 |
return raw_data, df
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
| 31 |
"""Creates the different dataframes for the evaluation queues requestes"""
|
| 32 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
|
|
|
| 27 |
return raw_data, df
|
| 28 |
|
| 29 |
|
| 30 |
+
def get_leaderboard_df_quota(results_path: str, requests_path: str, dynamic_path: str,cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 31 |
+
"""Creates a dataframe from all the individual experiment results"""
|
| 32 |
+
raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path)
|
| 33 |
+
for v in raw_data:
|
| 34 |
+
print(v.to_dict())
|
| 35 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
| 36 |
+
#all_data_json.append(baseline_row)
|
| 37 |
+
filter_models_flags(all_data_json)
|
| 38 |
+
df = pd.DataFrame.from_records(all_data_json)
|
| 39 |
+
print("AutoEvalColumn.average.name",AutoEvalColumn.average.name)
|
| 40 |
+
df = df.sort_values(by=[AutoEvalColumnQuota.average.name], ascending=False)
|
| 41 |
+
df = df[cols].round(decimals=2)
|
| 42 |
+
|
| 43 |
+
# filter out if any of the benchmarks have not been produced
|
| 44 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 45 |
+
return raw_data, df
|
| 46 |
+
|
| 47 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
| 48 |
"""Creates the different dataframes for the evaluation queues requestes"""
|
| 49 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|