Spaces:
Running
Running
lixuejing
commited on
Commit
·
33c99fd
1
Parent(s):
463d2fc
update
Browse files- app.py +22 -8
- src/display/css_html_js.py +1 -1
app.py
CHANGED
|
@@ -103,11 +103,13 @@ def update_table(
|
|
| 103 |
hidden_df: pd.DataFrame,
|
| 104 |
columns: list,
|
| 105 |
query: str,
|
|
|
|
|
|
|
| 106 |
):
|
| 107 |
print("query", query)
|
| 108 |
#filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
| 109 |
-
filtered_df = filter_queries(query, hidden_df)
|
| 110 |
-
df = select_columns(filtered_df, columns)
|
| 111 |
return df
|
| 112 |
|
| 113 |
|
|
@@ -120,19 +122,19 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
| 120 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 121 |
|
| 122 |
|
| 123 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 124 |
-
always_here_cols = [c.name for c in fields(
|
| 125 |
-
dummy_col = [
|
| 126 |
#AutoEvalColumn.model_type_symbol.name,
|
| 127 |
#AutoEvalColumn.model.name,
|
| 128 |
# We use COLS to maintain sorting
|
| 129 |
filtered_df = df[
|
| 130 |
-
always_here_cols + [c for c in
|
| 131 |
]
|
| 132 |
return filtered_df
|
| 133 |
|
| 134 |
|
| 135 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
| 136 |
"""Added by Abishek"""
|
| 137 |
final_df = []
|
| 138 |
if query != "":
|
|
@@ -146,7 +148,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 146 |
if len(final_df) > 0:
|
| 147 |
filtered_df = pd.concat(final_df)
|
| 148 |
filtered_df = filtered_df.drop_duplicates(
|
| 149 |
-
subset=[
|
| 150 |
)
|
| 151 |
|
| 152 |
return filtered_df
|
|
@@ -287,6 +289,8 @@ with demo:
|
|
| 287 |
#filter_columns_size,
|
| 288 |
#hide_models,
|
| 289 |
search_bar,
|
|
|
|
|
|
|
| 290 |
],
|
| 291 |
leaderboard_table,
|
| 292 |
)
|
|
@@ -303,6 +307,8 @@ with demo:
|
|
| 303 |
#filter_columns_size,
|
| 304 |
#hide_models,
|
| 305 |
search_bar,
|
|
|
|
|
|
|
| 306 |
],
|
| 307 |
leaderboard_table,
|
| 308 |
)
|
|
@@ -321,6 +327,8 @@ with demo:
|
|
| 321 |
#filter_columns_size,
|
| 322 |
#hide_models,
|
| 323 |
search_bar,
|
|
|
|
|
|
|
| 324 |
],
|
| 325 |
leaderboard_table,
|
| 326 |
queue=True,
|
|
@@ -416,6 +424,8 @@ with demo:
|
|
| 416 |
#filter_columns_size,
|
| 417 |
#hide_models,
|
| 418 |
search_bar,
|
|
|
|
|
|
|
| 419 |
],
|
| 420 |
leaderboard_table,
|
| 421 |
)
|
|
@@ -432,6 +442,8 @@ with demo:
|
|
| 432 |
#filter_columns_size,
|
| 433 |
#hide_models,
|
| 434 |
search_bar,
|
|
|
|
|
|
|
| 435 |
],
|
| 436 |
leaderboard_table,
|
| 437 |
)
|
|
@@ -450,6 +462,8 @@ with demo:
|
|
| 450 |
#filter_columns_size,
|
| 451 |
#hide_models,
|
| 452 |
search_bar,
|
|
|
|
|
|
|
| 453 |
],
|
| 454 |
leaderboard_table,
|
| 455 |
queue=True,
|
|
|
|
| 103 |
hidden_df: pd.DataFrame,
|
| 104 |
columns: list,
|
| 105 |
query: str,
|
| 106 |
+
allcolumns: list,
|
| 107 |
+
allcols: list,
|
| 108 |
):
|
| 109 |
print("query", query)
|
| 110 |
#filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
| 111 |
+
filtered_df = filter_queries(query, hidden_df,allcolums)
|
| 112 |
+
df = select_columns(filtered_df, columns, allcolumns, allcols)
|
| 113 |
return df
|
| 114 |
|
| 115 |
|
|
|
|
| 122 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 123 |
|
| 124 |
|
| 125 |
+
def select_columns(df: pd.DataFrame, columns: list, allcolumns=AutoEvalColum, ALLCOLS=COLS) -> pd.DataFrame:
|
| 126 |
+
always_here_cols = [c.name for c in fields(allcolumns) if c.never_hidden]
|
| 127 |
+
dummy_col = [allcolumns.dummy.name]
|
| 128 |
#AutoEvalColumn.model_type_symbol.name,
|
| 129 |
#AutoEvalColumn.model.name,
|
| 130 |
# We use COLS to maintain sorting
|
| 131 |
filtered_df = df[
|
| 132 |
+
always_here_cols + [c for c in ALLCOLS if c in df.columns and c in columns] + dummy_col
|
| 133 |
]
|
| 134 |
return filtered_df
|
| 135 |
|
| 136 |
|
| 137 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame, allcolumns):
|
| 138 |
"""Added by Abishek"""
|
| 139 |
final_df = []
|
| 140 |
if query != "":
|
|
|
|
| 148 |
if len(final_df) > 0:
|
| 149 |
filtered_df = pd.concat(final_df)
|
| 150 |
filtered_df = filtered_df.drop_duplicates(
|
| 151 |
+
subset=[allcolumns.model.name, allcolumns.precision.name, allcolumns.revision.name]
|
| 152 |
)
|
| 153 |
|
| 154 |
return filtered_df
|
|
|
|
| 289 |
#filter_columns_size,
|
| 290 |
#hide_models,
|
| 291 |
search_bar,
|
| 292 |
+
AutoEvalColumn,
|
| 293 |
+
COLS,
|
| 294 |
],
|
| 295 |
leaderboard_table,
|
| 296 |
)
|
|
|
|
| 307 |
#filter_columns_size,
|
| 308 |
#hide_models,
|
| 309 |
search_bar,
|
| 310 |
+
AutoEvalColumn,
|
| 311 |
+
COLS,
|
| 312 |
],
|
| 313 |
leaderboard_table,
|
| 314 |
)
|
|
|
|
| 327 |
#filter_columns_size,
|
| 328 |
#hide_models,
|
| 329 |
search_bar,
|
| 330 |
+
AutoEvalColumn,
|
| 331 |
+
COLS,
|
| 332 |
],
|
| 333 |
leaderboard_table,
|
| 334 |
queue=True,
|
|
|
|
| 424 |
#filter_columns_size,
|
| 425 |
#hide_models,
|
| 426 |
search_bar,
|
| 427 |
+
AutoEvalColumnQuota,
|
| 428 |
+
QUOTACOLS,
|
| 429 |
],
|
| 430 |
leaderboard_table,
|
| 431 |
)
|
|
|
|
| 442 |
#filter_columns_size,
|
| 443 |
#hide_models,
|
| 444 |
search_bar,
|
| 445 |
+
AutoEvalColumnQuota,
|
| 446 |
+
QUOTACOLS,
|
| 447 |
],
|
| 448 |
leaderboard_table,
|
| 449 |
)
|
|
|
|
| 462 |
#filter_columns_size,
|
| 463 |
#hide_models,
|
| 464 |
search_bar,
|
| 465 |
+
AutoEvalColumnQuota,
|
| 466 |
+
QUOTACOLS,
|
| 467 |
],
|
| 468 |
leaderboard_table,
|
| 469 |
queue=True,
|
src/display/css_html_js.py
CHANGED
|
@@ -5,7 +5,7 @@ custom_css = """
|
|
| 5 |
}
|
| 6 |
|
| 7 |
#models-to-add-text {
|
| 8 |
-
font-size:
|
| 9 |
}
|
| 10 |
|
| 11 |
#citation-button span {
|
|
|
|
| 5 |
}
|
| 6 |
|
| 7 |
#models-to-add-text {
|
| 8 |
+
font-size: 18px !important;
|
| 9 |
}
|
| 10 |
|
| 11 |
#citation-button span {
|