HelloGitHub's picture
update
8a0053d
raw
history blame
7.24 kB
import json
import os
from datetime import datetime, timezone
from huggingface_hub import snapshot_download
from src.submission.check_validity import get_model_tags
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def submit_eval_complete(
model_name: str,
revision_commit: str,
model_api_url: str,
model_api_key: str,
online_api_model_name: str,
runsh_file,
adapter_file
):
"""
Complete evaluation submission - integrates all three parts of information
"""
# Validate model information
if not model_name or not model_name.strip():
return styled_error("Please enter model name")
if not revision_commit or not revision_commit.strip():
revision_commit = "main"
# Validate API information (if provided)
if model_api_url and model_api_key and online_api_model_name:
if not model_api_url.startswith(('http://', 'https://')):
return styled_error("API URL format is incorrect, please start with http:// or https://")
# Validate inference files (if provided)
if runsh_file and adapter_file:
max_size = 5 * 1024 * 1024 # 5MB
if os.path.getsize(runsh_file.name) > max_size:
return styled_error("run.sh file size cannot exceed 5MB")
if os.path.getsize(adapter_file.name) > max_size:
return styled_error("model_adapter.py file size cannot exceed 5MB")
# Call the original add_new_eval function
try:
result = add_new_eval(
model=model_name,
model_api_url=model_api_url or "",
model_api_key=model_api_key or "",
model_api_name=online_api_model_name or "",
base_model="", # Can be set as needed
revision=revision_commit,
precision="float16", # Default precision
private="false",
weight_type="Original", # Default weight type
model_type="", # Can be set as needed
runsh=runsh_file,
adapter=adapter_file
)
return result
except Exception as e:
return styled_error(f"Submission failed: {str(e)}")
def add_new_eval(
model: str,
model_api_url: str,
model_api_key: str,
model_api_name: str,
base_model: str,
revision: str,
precision: str,
private: str,
weight_type: str,
model_type: str,
runsh,
adapter
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None:
model_type = ""
#return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
architecture = "?"
downloads = 0
created_at = ""
# Is the model on the hub?
if len(model_api_url)==0:
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
tags = []
likes = model_info.likes
else:
model_size = 0
license = ""
likes = 0
tags = []
downloads = 0
# Seems good, creating the eval
print("Adding new eval", runsh)
max_size = 5 * 1024 * 1024 # 5MB
if (runsh is not None) and (adapter is not None):
if os.path.getsize(runsh.name) > max_size:
return "Error: File size cannot exceed 5MB!"
if os.path.getsize(adapter.name) > max_size:
return "Error: File size cannot exceed 5MB!"
with open(runsh.name, "r") as f:
runsh = f.read()
with open(adapter.name, "r") as f:
adapter = f.read()
else:
runsh = ""
adapter = ""
eval_entry = {
"model": model,
"model_api_url": model_api_url,
"model_api_key": model_api_key,
"model_api_name": model_api_name,
"base_model": base_model,
"revision": revision,
"precision": precision,
"private": private,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"params": model_size,
"private": False,
"runsh": runsh,
"adapter": adapter,
}
supplementary_info = {
"likes": 0,
"license": '',
"still_on_hub": True,
"tags": tags,
"downloads": downloads,
"created_at": created_at
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# We want to grab the latest version of the submission file to not accidentally overwrite it
snapshot_download(
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
with open(DYNAMIC_INFO_FILE_PATH) as f:
all_supplementary_info = json.load(f)
all_supplementary_info[model] = supplementary_info
with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
json.dump(all_supplementary_info, f, indent=2)
API.upload_file(
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
repo_id=DYNAMIC_INFO_REPO,
repo_type="dataset",
commit_message=f"Add {model} to dynamic info queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)