Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| from dataclasses import dataclass, make_dataclass | |
| from enum import Enum | |
| import pandas as pd | |
| from src.about import Tasks,Quotas | |
| def fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| dummy: bool = False | |
| ## Leaderboard columns | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
| auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
| #Scores | |
| auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)]) | |
| for task in Tasks: | |
| auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
| # Model information | |
| auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
| auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
| auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) | |
| auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
| auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
| auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) | |
| auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) | |
| # Dummy column for the search bar (hidden by the custom CSS) | |
| auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| ## Leaderboard columns | |
| auto_eval_column_quota_dict = [] | |
| # Init | |
| auto_eval_column_quota_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
| auto_eval_column_quota_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
| #Scores | |
| auto_eval_column_quota_dict.append(["average_quota", ColumnContent, ColumnContent("AverageSampled β¬οΈ", "number", True)]) | |
| for task in Quotas: | |
| auto_eval_column_quota_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
| # Model information | |
| auto_eval_column_quota_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
| auto_eval_column_quota_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
| auto_eval_column_quota_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) | |
| auto_eval_column_quota_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
| auto_eval_column_quota_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
| auto_eval_column_quota_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) | |
| auto_eval_column_quota_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) | |
| # Dummy column for the search bar (hidden by the custom CSS) | |
| auto_eval_column_quota_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumnQuota = make_dataclass("AutoEvalColumnQuota", auto_eval_column_quota_dict, frozen=True) | |
| ## For the queue columns in the submission tab | |
| class EvalQueueColumn: # Queue column | |
| model = ColumnContent("model", "markdown", True) | |
| revision = ColumnContent("revision", "str", True) | |
| private = ColumnContent("private", "bool", True) | |
| precision = ColumnContent("precision", "str", True) | |
| weight_type = ColumnContent("weight_type", "str", "Original") | |
| status = ColumnContent("status", "str", True) | |
| ## All the model information that we might need | |
| class ModelDetails: | |
| name: str | |
| display_name: str = "" | |
| symbol: str = "" # emoji | |
| class ModelType(Enum): | |
| PT = ModelDetails(name="pretrained", symbol="π’") | |
| FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πΆ") | |
| chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬") | |
| merges = ModelDetails(name="base merges and moerges", symbol="π€") | |
| Unknown = ModelDetails(name="", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type): | |
| if "fine-tuned" in type or "πΆ" in type: | |
| return ModelType.FT | |
| if "pretrained" in type or "π’" in type: | |
| return ModelType.PT | |
| if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]): | |
| return ModelType.chat | |
| if "merge" in type or "π€" in type: | |
| return ModelType.merges | |
| return ModelType.Unknown | |
| class WeightType(Enum): | |
| Adapter = ModelDetails("Adapter") | |
| Original = ModelDetails("Original") | |
| Delta = ModelDetails("Delta") | |
| class Precision(Enum): | |
| float16 = ModelDetails("float16") | |
| bfloat16 = ModelDetails("bfloat16") | |
| qt_8bit = ModelDetails("8bit") | |
| qt_4bit = ModelDetails("4bit") | |
| qt_GPTQ = ModelDetails("GPTQ") | |
| Unknown = ModelDetails("?") | |
| def from_str(precision): | |
| if precision in ["torch.float16", "float16"]: | |
| return Precision.float16 | |
| if precision in ["torch.bfloat16", "bfloat16"]: | |
| return Precision.bfloat16 | |
| if precision in ["8bit"]: | |
| return Precision.qt_8bit | |
| if precision in ["4bit"]: | |
| return Precision.qt_4bit | |
| if precision in ["GPTQ", "None"]: | |
| return Precision.qt_GPTQ | |
| return Precision.Unknown | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
| TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
| QUOTACOLS = [c.name for c in fields(AutoEvalColumnQuota) if not c.hidden] | |
| QUOTATYPES = [c.type for c in fields(AutoEvalColumnQuota) if not c.hidden] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
| BENCHMARK_QUOTACOLS = [t.value.col_name for t in Quotas] | |
| NUMERIC_INTERVALS = { | |
| "?": pd.Interval(-1, 0, closed="right"), | |
| "~1.5": pd.Interval(0, 2, closed="right"), | |
| "~3": pd.Interval(2, 4, closed="right"), | |
| "~7": pd.Interval(4, 9, closed="right"), | |
| "~13": pd.Interval(9, 20, closed="right"), | |
| "~35": pd.Interval(20, 45, closed="right"), | |
| "~60": pd.Interval(45, 70, closed="right"), | |
| "70+": pd.Interval(70, 10000, closed="right"), | |
| } | |
| # Define the baselines | |
| #baseline_row = { | |
| # AutoEvalColumn.model.name: "<p>Baseline</p>", | |
| # AutoEvalColumn.revision.name: "N/A", | |
| # AutoEvalColumn.precision.name: None, | |
| # AutoEvalColumn.average.name: 92.75, | |
| # #AutoEvalColumn.merged.name: False, | |
| # AutoEvalColumn.CMMMU.name: 100, | |
| # AutoEvalColumn.MMMU.name: 100, | |
| # AutoEvalColumn.MMMU_Pro_standard.name: 100, | |
| # AutoEvalColumn.MMMU_Pro_vision.name: 100, | |
| # AutoEvalColumn.MathVision.name: 100, | |
| # AutoEvalColumn.CII_Bench.name: 100, | |
| # AutoEvalColumn.Blink.name: 100, | |
| # AutoEvalColumn.CharXiv.name: 100, | |
| # AutoEvalColumn.MathVerse.name: 100, | |
| # AutoEvalColumn.MmvetV2.name: 100, | |
| # AutoEvalColumn.Ocrlite.name: 100, | |
| # AutoEvalColumn.OcrliteZh.name: 100, | |
| # AutoEvalColumn.dummy.name: "baseline", | |
| # AutoEvalColumn.model_type.name: "", | |
| # AutoEvalColumn.flagged.name: False, | |
| #} | |
| # | |
| ## Define the human baselines | |
| #human_baseline_row = { | |
| # AutoEvalColumn.model.name: "<p>Human performance</p>", | |
| # AutoEvalColumn.revision.name: "N/A", | |
| # AutoEvalColumn.precision.name: None, | |
| # AutoEvalColumn.average.name: 92.75, | |
| # #AutoEvalColumn.merged.name: False, | |
| # AutoEvalColumn.CMMMU.name: 100, | |
| # AutoEvalColumn.MMMU.name: 100, | |
| # AutoEvalColumn.MMMU_Pro_standard.name: 100, | |
| # AutoEvalColumn.MMMU_Pro_vision.name: 100, | |
| # AutoEvalColumn.MathVision.name: 100, | |
| # AutoEvalColumn.CII_Bench.name: 100, | |
| # AutoEvalColumn.Blink.name: 100, | |
| # AutoEvalColumn.CharXiv.name: 100, | |
| # AutoEvalColumn.MathVerse.name: 100, | |
| # AutoEvalColumn.MmvetV2.name: 100, | |
| # AutoEvalColumn.Ocrlite.name: 100, | |
| # AutoEvalColumn.OcrliteZh.name: 100, | |
| # AutoEvalColumn.dummy.name: "human_baseline", | |
| # AutoEvalColumn.model_type.name: "", | |
| # AutoEvalColumn.flagged.name: False, | |
| #} | |
