Spaces:
Running
Running
| import os | |
| from huggingface_hub import HfApi | |
| # Info to change for your repository | |
| # ---------------------------------- | |
| TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org | |
| #OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format! | |
| #REPO_ID = f"{OWNER}/leaderboard" | |
| #QUEUE_REPO = f"{OWNER}/requests" | |
| #RESULTS_REPO = f"{OWNER}/results" | |
| #DYNAMIC_INFO_REPO = f"{OWNER}/dynamic_model_information" | |
| REPO_ID = "BAAI/EmbodiedVerse" | |
| QUEUE_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_requests" | |
| DYNAMIC_INFO_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_dynamic_model_information" | |
| RESULTS_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_results" | |
| IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) | |
| # If you setup a cache later, just change HF_HOME | |
| CACHE_PATH=os.getenv("HF_HOME", ".") | |
| # Local caches | |
| EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") | |
| EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") | |
| EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") | |
| EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") | |
| DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info") | |
| DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json") | |
| PATH_TO_COLLECTION = "open-cn-llm-leaderboard/flageval-vlm-leaderboard-best-models-677e51cdc44f8123e02cbda1" | |
| # Rate limit variables | |
| RATE_LIMIT_PERIOD = 7 | |
| RATE_LIMIT_QUOTA = 5 | |
| HAS_HIGHER_RATE_LIMIT = ["TheBloke"] | |
| API = HfApi(token=TOKEN) | |