Spaces:
Running
Running
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| LLM_BENCHMARKS_TEXT2, | |
| TABLE_TEXT, | |
| TITLE, | |
| EVALUATION_METRIC_TEXT, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision, | |
| NUMERIC_INTERVALS, | |
| QUOTACOLS, | |
| QUOTATYPES, | |
| AutoEvalColumnQuota, | |
| BENCHMARK_QUOTACOLS | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_quota | |
| from src.submission.submit import ( | |
| add_new_eval, | |
| submit_eval_complete | |
| ) | |
| from src.scripts.update_all_request_files import update_dynamic_files | |
| from src.tools.collections import update_collections | |
| from src.tools.datastatics import get_statics | |
| #from src.tools.plots import ( | |
| # create_plot_df, | |
| # create_scores_df, | |
| #) | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID, token=TOKEN) | |
| def init_space(): | |
| print("begin init space") | |
| ### Space initialisation | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| print("QUOTACOLS+COLS",list(set(QUOTACOLS+COLS))) | |
| raw_data, original_df = get_leaderboard_df( | |
| results_path=EVAL_RESULTS_PATH, | |
| requests_path=EVAL_REQUESTS_PATH, | |
| dynamic_path=DYNAMIC_INFO_FILE_PATH, | |
| #cols=COLS, | |
| #benchmark_cols=BENCHMARK_COLS, | |
| cols=list(set(QUOTACOLS+COLS)), | |
| benchmark_cols=list(set(BENCHMARK_QUOTACOLS+BENCHMARK_COLS)) | |
| ) | |
| #update_collections(original_df.copy()) | |
| leaderboard_df = original_df.copy() | |
| raw_data_quota, original_df_quota = get_leaderboard_df( | |
| results_path=EVAL_RESULTS_PATH, | |
| requests_path=EVAL_REQUESTS_PATH, | |
| dynamic_path=DYNAMIC_INFO_FILE_PATH, | |
| cols=list(set(QUOTACOLS+COLS)), | |
| benchmark_cols=list(set(BENCHMARK_QUOTACOLS+BENCHMARK_COLS)) | |
| ) | |
| #update_collections(original_df.copy()) | |
| leaderboard_df_quota = original_df_quota.copy() | |
| #plot_df = create_plot_df(create_scores_df(raw_data)) | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| #return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
| return leaderboard_df, original_df, leaderboard_df_quota, original_df_quota,finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
| leaderboard_df, original_df, leaderboard_df_quota, original_df_quota, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() | |
| # Searching and filtering | |
| #type_query: list, | |
| #precision_query: str, | |
| #size_query: list, | |
| #hide_models: list, | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| query: str, | |
| ): | |
| print("query", query) | |
| #filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models) | |
| filtered_df = filter_queries(query, hidden_df) | |
| df = select_columns(filtered_df, columns) | |
| return df | |
| def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
| query = request.query_params.get("query") or "" | |
| return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| dummy_col = [AutoEvalColumn.dummy.name] | |
| #AutoEvalColumn.model_type_symbol.name, | |
| #AutoEvalColumn.model.name, | |
| # We use COLS to maintain sorting | |
| filtered_df = df[ | |
| always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col | |
| ] | |
| return filtered_df | |
| def filter_queries(query: str, filtered_df: pd.DataFrame): | |
| """Added by Abishek""" | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
| ) | |
| return filtered_df | |
| def update_table_q( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| query: str, | |
| ): | |
| filtered_df = filter_queriesq(query, hidden_df) | |
| df = select_columnsq(filtered_df, columns) | |
| return df | |
| def search_tableq(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[(df[AutoEvalColumnQuota.dummy.name].str.contains(query, case=False))] | |
| def select_columnsq(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden] | |
| dummy_col = [AutoEvalColumnQuota.dummy.name] | |
| # We use COLS to maintain sorting | |
| filtered_df = df[ | |
| always_here_cols + [c for c in QUOTACOLS if c in df.columns and c in columns] + dummy_col | |
| ] | |
| return filtered_df | |
| def filter_queriesq(query: str, filtered_df: pd.DataFrame): | |
| """Added by Abishek""" | |
| final_df = [] | |
| if query != "": | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_tableq(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[AutoEvalColumnQuota.model.name, AutoEvalColumnQuota.precision.name, AutoEvalColumnQuota.revision.name] | |
| ) | |
| return filtered_df | |
| def filter_models( | |
| df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list | |
| ) -> pd.DataFrame: | |
| # Show all models | |
| if "Private or deleted" in hide_models: | |
| filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
| else: | |
| filtered_df = df | |
| if "Contains a merge/moerge" in hide_models: | |
| filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False] | |
| if "MoE" in hide_models: | |
| filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False] | |
| if "Flagged" in hide_models: | |
| filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False] | |
| type_emoji = [t[0] for t in type_query] | |
| filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
| filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
| numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
| params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
| mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
| filtered_df = filtered_df.loc[mask] | |
| return filtered_df | |
| leaderboard_df = filter_models( | |
| df=leaderboard_df, | |
| type_query=[t.to_str(" : ") for t in ModelType], | |
| size_query=list(NUMERIC_INTERVALS.keys()), | |
| precision_query=[i.value.name for i in Precision], | |
| hide_models=[], # Deleted, merges, flagged, MoEs | |
| ) | |
| leaderboard_df_quota = filter_models( | |
| df=leaderboard_df_quota, | |
| type_query=[t.to_str(" : ") for t in ModelType], | |
| size_query=list(NUMERIC_INTERVALS.keys()), | |
| precision_query=[i.value.name for i in Precision], | |
| hide_models=[], # Deleted, merges, flagged, MoEs | |
| ) | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("🏅 EmbodiedVerse-Open", elem_id="vlm-benchmark-tab-table", id=0): | |
| #leaderboard = init_leaderboard(LEADERBOARD_DF) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden and not c.dummy | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=leaderboard_df[ | |
| [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
| + shown_columns.value | |
| + [AutoEvalColumnQuota.dummy.name] | |
| ], | |
| headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| #column_widths=["2%", "33%"] | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df[COLS], | |
| #value=leaderboard_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| # Define a hidden component that will trigger a reload only if a query parameter has been set | |
| hidden_search_bar = gr.Textbox(value="", visible=False) | |
| hidden_search_bar.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| # Check query parameter once at startup and update search bar + hidden component | |
| demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
| #for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]: | |
| for selector in [shown_columns]:#, filter_columns_type, filter_columns_precision, filter_columns_size]:#, hide_models]: | |
| selector.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| with gr.TabItem("🏅 EmbodiedVerse-Open-Sampled", elem_id="vlm-quota-benchmark-tab-table", id=1): | |
| #leaderboard = init_leaderboard(LEADERBOARD_DF) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumnQuota) | |
| if not c.hidden and not c.never_hidden and not c.dummy | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumnQuota) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=leaderboard_df_quota[ | |
| [c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden] | |
| + shown_columns.value | |
| + [AutoEvalColumnQuota.dummy.name] | |
| ], | |
| headers=[c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden] + shown_columns.value, | |
| datatype=QUOTATYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| #column_widths=["2%", "33%"] | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df_quota[QUOTACOLS], | |
| headers=QUOTACOLS, | |
| datatype=QUOTATYPES, | |
| visible=False, | |
| ) | |
| search_bar.submit( | |
| update_table_q, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| # Define a hidden component that will trigger a reload only if a query parameter has been set | |
| hidden_search_bar = gr.Textbox(value="", visible=False) | |
| hidden_search_bar.change( | |
| update_table_q, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| ) | |
| # Check query parameter once at startup and update search bar + hidden component | |
| demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
| #for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]: | |
| for selector in [shown_columns]:#, filter_columns_type, filter_columns_precision, filter_columns_size]: #, hide_models]: | |
| selector.change( | |
| update_table_q, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| gr.Markdown(EVALUATION_METRIC_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| gr.HTML(TABLE_TEXT) | |
| gr.Markdown(LLM_BENCHMARKS_TEXT2, elem_classes="markdown-text") | |
| with gr.TabItem("📤 Submit here!", elem_id="submit-model-tab", id=2): | |
| # 1. Submit your modelinfos here! | |
| gr.Markdown("✨ Submit your modelinfos here!") | |
| with gr.Row(): | |
| model_name = gr.Textbox(label="Model Name") | |
| revision_commit = gr.Textbox(label="Revision commit") | |
| # 2. Submit your API infos here! (API only) | |
| gr.Markdown("📧 Submit your API infos here! (API only)") | |
| with gr.Row(): | |
| model_api_url = gr.Textbox(label="Model online api url") | |
| model_api_key = gr.Textbox(label="Model online api key") | |
| online_api_model_name = gr.Textbox(label="Online api model name") | |
| # 3. Submit your inference infos here! (inference only) | |
| gr.Markdown("📧 Submit your inference infos here! (inference only)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("upload run.sh file") | |
| runsh_file = gr.File(file_types=[".sh"], file_count="single") | |
| with gr.Column(): | |
| gr.Markdown("upload model_adapter.py file") | |
| adapter_file = gr.File(file_types=[".py"], file_count="single") | |
| # 4. Submit Eval 按钮 | |
| submit_btn = gr.Button("Submit Eval") | |
| submit_output = gr.HTML(label="", visible=True) | |
| # 绑定事件 | |
| submit_btn.click( | |
| fn=lambda name, rev, url, key, api_name, runsh, adapter: submit_eval_complete( | |
| name, rev, url, key, api_name, runsh, adapter | |
| ), | |
| inputs=[model_name, revision_commit, model_api_url, model_api_key, | |
| online_api_model_name, runsh_file, adapter_file], | |
| outputs=submit_output | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("📙 Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.add_job(update_dynamic_files, "cron", minute=30) # launched every hour on the hour | |
| scheduler.add_job(get_statics, 'cron', hour=12, minute=15, timezone='Asia/Shanghai') # 添加定时任务,每天0:30执行一次 | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |