from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_NEW_TOKENS = 4096 MODEL_NAME = "Azure99/Blossom-V6.1-8B" model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def get_input_ids(inst, history): conversation = [] for user, assistant in history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": inst}) return tokenizer.apply_chat_template(conversation, return_tensors="pt").to( model.device ) @spaces.GPU def chat(inst, history, temperature, top_p, repetition_penalty): streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True ) input_ids = get_input_ids(inst, history) generation_kwargs = dict( input_ids=input_ids, streamer=streamer, do_sample=True, max_new_tokens=MAX_NEW_TOKENS, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, ) Thread(target=model.generate, kwargs=generation_kwargs).start() outputs = "" for new_text in streamer: outputs += new_text yield outputs additional_inputs = [ gr.Slider( label="Temperature", value=0.5, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Controls randomness in choosing words.", ), gr.Slider( label="Top-P", value=0.85, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Picks words until their combined probability is at least top_p.", ), gr.Slider( label="Repetition penalty", value=1.05, minimum=1.0, maximum=1.2, step=0.01, interactive=True, info="Repetition Penalty: Controls how much repetition is penalized.", ), ] gr.ChatInterface( chat, chatbot=gr.Chatbot( show_label=False, height=500, show_copy_button=True, render_markdown=True ), textbox=gr.Textbox(placeholder="", container=False, scale=7), title="Blossom-V6.1-8B Demo", description="Hello, I am Blossom, an open source conversational large language model.🌠" 'GitHub', theme="soft", examples=[ ["Hello"], ["What is MBTI"], ["用Python实现二分查找"], ["为switch写一篇小红书种草文案,带上emoji"], ], cache_examples=False, additional_inputs=additional_inputs, additional_inputs_accordion=gr.Accordion(label="Config", open=True), clear_btn="🗑️Clear", undo_btn="↩️Undo", retry_btn="🔄Retry", submit_btn="➡️Submit", ).queue().launch()