from typing import Dict, Any import datasets import evaluate import numpy as np from evaluate.utils.file_utils import add_start_docstrings _DESCRIPTION = """ The "top-5 error" is the percentage of times that the target label does not appear among the 5 highest-probability predictions. It can be computed with: Top-5 Error Rate = 1 - Top-5 Accuracy or equivalently: Top-5 Error Rate = (Number of incorrect top-5 predictions) / (Total number of cases processed) Where: - Top-5 Accuracy: The proportion of cases where the true label is among the model's top 5 predicted classes. - Incorrect top-5 prediction: The true label is not in the top 5 predicted classes (ranked by probability). """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. Returns: accuracy (`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input. Examples: >>> accuracy_metric = evaluate.load("accuracy") >>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0]) >>> print(results) {'accuracy': 0.5} """ _CITATION = """ """ @add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Top5ErrorRate(evaluate.Metric): def _info(self): return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } ), reference_urls=[], ) def _compute( self, *, predictions: list[list[float]] = None, references: list[float] = None, **kwargs, ) -> Dict[str, Any]: # 确保输入是numpy数组 predictions = np.array(predictions) references = np.array(references) # 获取每个样本的top-5预测类别 top5_pred = np.argsort(predictions, axis=1)[:, -5:] # 计算top-5错误率 correct = 0 total = len(references) for i in range(total): if references[i] in top5_pred[i]: correct += 1 error_rate = 1.0 - (correct / total) return { "top5_error_rate": float(error_rate) }