top5_error_rate / app.py
Aye10032's picture
change output type
db4f564
raw
history blame
1.25 kB
import sys
from pathlib import Path
import evaluate
import gradio as gr
import polars as pl
from evaluate import parse_readme
metric = evaluate.load("Aye10032/top5_error_rate")
def compute(data):
result = {
"predictions": [list(map(float, pred.split(","))) for pred in data["predictions"]],
"references": data["references"].cast(pl.Int64).to_list()
}
return metric.compute(**result)
local_path = Path(sys.path[0])
default_value = pl.DataFrame({
'predictions': ['0.82,0.95,0.6,0.14,0.15,0.70', '0.67,0.31,0.01,0.60,0.44,0.51', '0.57,0.06,0.69,0.07,0.96,0.72'],
'references': ['1', '3', '1']
})
iface = gr.Interface(
fn=compute,
inputs=gr.Dataframe(
headers=['predictions', 'references'],
col_count=2,
row_count=1,
datatype='str',
type='polars',
value=default_value
),
outputs=gr.Textbox(label=metric.name),
description=(
metric.info.description
+ "\nIf this is a text-based metric, make sure to wrap you input in double quotes."
" Alternatively you can use a JSON-formatted list as input."
),
title=f"Metric: {metric.name}",
article=parse_readme(local_path / "README.md"),
)
iface.launch()