|
import logging
|
|
from PIL import Image
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class ContextualIntelligenceAgent:
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
def infer_context_tags(self, image_data: dict, initial_predictions: dict) -> list[str]:
|
|
"""Simulates an LLM inferring context tags based on image data and predictions."""
|
|
context_tags = []
|
|
|
|
|
|
if image_data.get("width", 0) > 1000 and image_data.get("height", 0) > 1000:
|
|
context_tags.append("high_resolution")
|
|
|
|
|
|
if any(v.get("Real Score", 0) > 0.9 for v in initial_predictions.values()):
|
|
context_tags.append("potentially_natural_scene")
|
|
|
|
|
|
|
|
|
|
mock_tags = ["outdoor", "sunny"]
|
|
for tag in mock_tags:
|
|
if tag not in context_tags:
|
|
context_tags.append(tag)
|
|
|
|
return context_tags
|
|
|
|
class ForensicAnomalyDetectionAgent:
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict:
|
|
"""Simulates an LLM analyzing descriptions of forensic images for anomalies."""
|
|
anomalies = {"summary": "No significant anomalies detected.", "details": []}
|
|
|
|
|
|
for desc in forensic_output_descriptions:
|
|
if "strong edges" in desc.lower() and "ela" in desc.lower():
|
|
anomalies["summary"] = "Potential manipulation indicated by ELA."
|
|
anomalies["details"].append("ELA: Unusually strong edges detected, suggesting image compositing.")
|
|
if "unexpected patterns" in desc.lower() and "bit plane" in desc.lower():
|
|
anomalies["summary"] = "Anomalies detected in bit plane data."
|
|
anomalies["details"].append("Bit Plane: Irregular patterns found, possibly indicating hidden data or processing.")
|
|
|
|
if len(anomalies["details"]) > 0:
|
|
anomalies["summary"] = "Multiple anomalies detected across forensic outputs."
|
|
|
|
return anomalies |